Browse Article

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All

Please wait a minute...
  • Select all
    |
  • SANG Yingying, LI Shanshan, BAO Wei, XU Dong, ZHANG Xue, ZHAO Yan
    Abstract (990) PDF (174) RichHTML (26)

    Soybean P34 protein mainly exists in soybean seeds,and its upstream promoter was likely to regulate the high expression of downstream genes in seeds.In order to further study the tissue expression pattern of soybean P34 protein gene and the regulatory activity of soybean P34 protein gene promoter,qRT-PCR was used to detect the expression of soybean P34 protein gene in soybean tissues.The 5'upstream sequence of soybean P34 protein gene(GmP34P)was cloned.The transcription initiation sites and cis-elements were analyzed by bioinformatics.The expression vector was constructed and the tobacco was transformed by Agrobacterium-mediated leaf disk method to detect GUS expression in transgenic tobacco.The results showed that the expression of P34 protein gene in soybean seeds was significantly higher than that in roots,stems,leaves and flowers.The length of GmP34P sequence obtained by cloning was 1 380 bp.Predictive analysis showed that the transcriptional start site of this sequence was base A at position 1 342,and the sequence contained a variety of cis-acting elements related to high seed expression,such as RY element,Skn-1 motif,2S seed protbanapa,etc.The plant expression vector pCAM-GmP34P containing GUS gene driven by GmP34P promoter was obtained.The positive transgenic plants were screened by hygromycin,PCR and RT-PCR.The results showed that GUS gene expression was extremely significant in transgenic tobacco seeds compared with other tissues by qRT-PCR with positive pCAM-GmP34P transgenic tobacco plants.GUS histochemical staining showed that the GmP34P promoter could regulate the high expression of downstream GUS gene in seeds.

  • CHENG Chunhua, CHEN Tao, ZHANG Long, GUO Lijian, CHE Zhuo, MA Jingfu, YANG Delong
    Abstract (862) PDF (345) RichHTML (59)

    To elucidate the mechanisms of cold response and explore superior cold-tolerance gene resources in wheat,this study employed transcriptome sequencing to uncover key regulatory networks underlying wheat cold response,and performed functional validation of the candidate gene TaGGCT18-6A.The results demonstrated that 4 ℃ cold treatments induced 10 893 and 18 784 differentially expressed genes(DEGs)in wheat seedlings after 6 h and 24 h cold treatment,respectively.KEGG analysis revealed significant enrichment of DEGs in pathways including MAPK signaling transduction and glutathione metabolism.A γ-glutamyl cyclotransferase gene TaGGCT18-6A was cloned through screening key genes in glutathione metabolism.This gene had a length of 1 772 bp,encoding 218 amino acids with conserved GGCT-like superfamily and ChaC core domain.Promoter cis-acting element analysis identified stress-responsive elements such as low-temperature-responsive(LTR)and dehydration-responsive (DRE)elements; consistently,expression pattern analysis showed sustained upregulation of TaGGCT18-6A under 4 ℃ cold treatments. Functional validation in transgenic rice revealed that overexpression lines OE#1, OE#2 and OE#3 exhibited significantly enhanced survival rate,plant height,and biomass. Overexpression lines OE#1 and OE#2 exhibited significantly enhanced plant height, while overexpression lines OE#1, OE#2 and OE#3 exhibited significantly reduced relative electrolyte leakage under -4 ℃ freezing treatments.After 4 ℃ treatment,overexpression lines accumulated higher levels of osmolytes(proline and soluble sugars),decreased malondialdehyde(MDA)content,and increased activities of superoxide dismutase(SOD),peroxidase(POD),and catalase(CAT).These findings collectively demonstrated that TaGGCT18-6A enhanced plant cold tolerance by regulating glutathione metabolism to improve antioxidant capacity.This study will provide a theoretical foundation and valuable genetic resources for molecular breeding of cold-tolerant wheat.

  • PENG Keyan, ZHAO Kainan, ZHOU Fabao, DIAO Yanbin, CHEN Guangzhou, LI Shengdong
    Abstract (833) PDF (208) RichHTML (13)

    To clarify the regulatory effect of nitrogen(N)fertilizer reduction and postponing on the productivity of wheat-maize double cropping system in Huang-Huai-Hai Plain.The annual N fertilizer experiment of summer maize and winter wheat was established of four N application systems:annual N fertilizer application 400 kg/ha of traditional farmer treatment(F400),10% reduction of annual N fertilizer(FN),20% reduction of annual N fertilizer(FH),and 30% reduction of annual N fertilizer(FL)from 2020 to 2023 at Jiyang Experimental Base of the Shandong Academy of Agricultural Sciences in Jinan.The grain yield,aboveground N accumulation characteristics,N use efficiency,and the nitrate residue after harvest in the 0—200 cm soil layer of wheat-maize double cropping system were tested,in order to provide the theoretical basis for further optimization of N fertilizer management in Huang-Huai-Hai Plain.The results indicated that N fertilizer postponing was optimized the grain yield of summer maize and winter wheat under the condition of N reduction,and the averaged across the three years,FL significantly increased by 9.2%—18.1%,13.5%—20.5%,and 11.1%—19.1%,respectively,compared with F400 and FN.N fertilizer postponing improved the N accumulation rate,and promoted aboveground N accumulation at wheat-maize different growth stages,and the averaged across the three years,FL significantly increased plant N accumulation by 5.7%—12.3% and 5.0%—12.8% under silking and maturity,respectively,compared with F400,FN,and FH,as well as 8.2%—17.2% in grain N accumulation.For winter wheat,FL and FH treatments were significantly higher than F400 and FN at jointing,anthesis,and maturity,and the averaged across the three years,FL and FH significantly increased by 23.4%—28.1%,20.7%—26.3%,and 12.6%—20.8%,respectively,compared with F400,FN and FH,at the same time the grain N accumulation under FL significantly increased by 16.4%,15.0% and 5.8%,respectively,compared with F400 and FN.N fertilizer postponing optimized the N use efficiency of wheat-maize double crop system,the averaged across the three years,FL significantly increased N uptake efficiency by 4.8%—57.7% and 32.0%—72.4% of summer maize and winter wheat,respectively,compared with F400,FN,and FH;and FL significantly increased N partial factor productivity by 68.8% and 40.4% in summer maize,respectively,compared with F400 and FN,as well as by 38.4%—71.8% in winter wheat compared with F400,FN,and FH.At harvest of summer maize and winter wheat,the soil nitrate residue was mainly enrichment in the 0—40 cm soil layer under four N application systems,the averaged across the three years,accounted for 40.0%,38.9%,44.9%,42.5% and 37.3%,36.9%,46.7%,38.3% of the 0—200 cm soil layer,respectively.In addition,the obvious accumulated effects in 0—200 cm soil layer nitrate residue under F400 and FN treatments at harvest of summer maize and winter wheat,but there was the relative balance was achieved under FL and FH treatments.In conclusion,a 30% reduction of annual N fertilizer by N fertilizer postponing could optimize plant N accumulation characteristics and realized synergistic improve grain yield and N use efficiency.Therefore,FL treatment was an optimal N application system for realizing the collaborative target of high-yield,high-efficiency,and environment-friendly of wheat-maize double cropping system in Huang-Huai-Hai Plain.

  • HUANG Youju, YU Yongbo, PANG Cuijing, SUN Shixu, LU Chen, YU Yanchong
    Abstract (812) PDF (148) RichHTML (33)

    WRKY is a unique class of transcription factors in plants,which plays an important role in plant abiotic stress response,seed dormancy and germination,growth and development,etc.In order to reveal the function and underlying molecular mechanism of GmWRKY44 gene in soybean WRKY transcription factor family,bioinformatics analysis and biology function verification of soybean Williams 82 GmWRKY44 were performed.GmWRKY44 gene was 1 077 bp in length and encoded 358 amino acids;the results of structural prediction and evolutionary analysis showed that,the secondary structure was composed of 23.46% α-helix,4.75% β-fold,58.94% irregular coil and 12.85% extended chain,and the tertiary structure was unified with the secondary structure;It contained a conserved WRKY domain, the zinc finger structure was of the C2H2 type, and it belonged to the WRKY IIc subfamily; GmWRKY44 is a homologous gene of Arabidopsis thaliana AtWRKY71 with a similarity of 35.56%, and the two genes had similar gene structures. RT-qPCR analysis showed that GmWRKY44 responded to salt stress and its expression level first decreased and then increased.Under salt stress,the germination rate and root length of wild-type(Col-0)and GmWRKY44 overexpressing Arabidopsis lines were inhibited to a certain extent,but GmWRKY44 overexpressing lines were significantly better than Col-0.In addition,under salt stress,the growth inhibition of GmWRKY44 overexpressing lines was lower than that of Col-0.Physiological index analysis revealed that under salt stress,the overexpression lines of GmWRKY44 exhibited significantly higher activities of superoxide dismutase(SOD),peroxidase(POD),and catalase(CAT)than Col-0,while the content of malondialdehyde(MDA)was significantly lower than Col-0.These data indicated that overexpression of GmWRKY44 could improve salt tolerance in transgenic Arabidopsis.

  • CAO Jinlong, WANG Li, CAO Lingfang, HAO Kaiyin, GU Jiliang, WANG Yu, CHE Zhijun
    Abstract (754) PDF (150) RichHTML (38)

    OFP is a class of plant-specific transcription factors that play important roles in the regulation of plant organ morphogenesis and response to abiotic stresses.In order to study the characterization of soybean OFP transcription factor family members and their roles in drought stress and salt stress,bioinformatics methods were applied to identify and analyze soybean OFP family members.The results showed that:a total of 41 GmOFPs,named GmOFP-1GmOFP-41,were identified in soybean;these genes were unevenly distributed on 19 chromosomes of soybean,encoding 152—414 amino acids;subcellular localization predicted that soybean OFP proteins were mainly localized in nucleus,chloroplasts,and mitochondria;a total of 10 conserved motifs were identified in soybean OFP proteins,conservative Motifs 1 and 2 were present in all OFP members.Phylogenetic analysis classified soybean and Arabidopsis OFP proteins into five subfamilies ClassⅠ—Class V,of which soybean OFP family genes were mainly distributed in ClassⅠ and Class Ⅲ.The collinearity analysis revealed that 75 pairs of genes in the soybean genome had collinearity,four pairs of genes had tandem duplications,and only two genes,GmOFP-2 and GmOFP-39,did not have collinearity,which indicated that gene fragment duplication was the main reason for the increase in the number of soybean OFP family members.The expression patterns of GmOFP gene family members under drought stress and salt stress treatments were analyzed by qRT-PCR,and the results showed that,compared with the control,16 members out of 41 GmOFP genes exhibited significant differences in gene expression levels after drought treatments,with significant up-regulation of the expression of GmOFP-15,GmOFP-17,and GmOFP-32,while the GmOFP-4,GmOFP-5,GmOFP-6,GmOFP-9,GmOFP-12,GmOFP-21,GmOFP-23,GmOFP-25,GmOFP-26,GmOFP-27,GmOFP-38,GmOFP-39,and GmOFP-40 were significantly down-regulated after drought treatment.Eight members of GmOFPs showed significant differences in gene expression levels after salt treatment,among which GmOFP-7,GmOFP-14,GmOFP-31,GmOFP-32,GmOFP-36,and GmOFP-40 were significantly up-regulated,and GmOFP-1 and GmOFP-15 were significantly down-regulated.The above results suggest that the soybean OFP gene family may have important functions in response to drought stress and salt stress.

  • WANG Wei, ZHANG Yutong, NIU Hailong, LIU Hongxin, ZHANG Wannian, XIAO Xia, ZHANG Lianxi, LI Yufa
    Abstract (746) PDF (88) RichHTML (16)

    In order to explore new approaches for high-oil peanut breeding and establish a new method for directly developing high-oil peanut germplasm,this study employed in vitro mutagenesis breeding technology to create new high-oil peanut germplasm.Jihua 9 embryo leaflet was used as mutagenic test materials,Jihua 9 and Jihua 54 were used as control test materials,and bleomycin was used as mutagenic agent.The ovules were sterilized and placed in gradient mutagenesis medium and screened for semi-lethal concentrations of bleomycin.After somatic embryos germinated into seedlings,sterile peanut seedlings were used as rootstocks,and transplanted to the field.Bioinformatics analysis of two known regulated peanut fat synthesis genes WRI1 and experimental feasibility validation by the correlation of WRI1 gene expression in grain and crude fat content of mutagenic plants were conducted.The results were best when the bleomycin was 3 mg/L.The crude fat content of IM13-3 was higher than that of Jihua 9(CK1,test variety control)and Jihua 54(CK2,high oil variety control).Two WRI1 genes,WRI1X2 and WRI1X1,encoding 366 and 357 amino acids,respectively,were both unstable hydrophilic proteins. WRI1 gene expression and crude fat content were significantly positively associated in grain.Bleomycin was first used as a peanut vitro mutagenesis agent,and IM13-3 was obtained with a crude fat content of 56.64%.It further proves the authenticity of Jihua 9 high oil mutant and the feasibility of peanut in vitro mutagenesis method. The gene expression level of the high-oil mutant WRI1 was determined and was significantly different from the control varieties. Demonstrate the feasibility of breeding methods for in vitro mutagenesis of peanut.

  • HAO Xiaocong, HOU Qiling, GAO Jiangang, YUE Jieru, AN Chunhui, WANG Changhua, YANG Jifang, BAI Xiucheng, SUN Hui, ZHAO Changping, ZHANG Fengting
    Abstract (739) PDF (82) RichHTML (3)

    To provide theoretical basis and technical support for rational nitrogen fertilizer management in high-yield cultivation of hybrid wheat,this study aims to investigate the effects of nitrogen application rate on yield formation,dry matter accumulation and distribution,nitrogen absorption and utilization,as well as the nitrogen absorption ratio of wheat fertilizers in two-line hybrid wheat.From 2020 to 2021,three two-line hybrid wheat combinations and one conventional variety were used as materials.A split plot design was adopted,with nitrogen (labeled with 15N urea) treatment as the main zone and varieties as sub zones.Four nitrogen level experiments were set up at N0,N120,N180,and N240.The dry matter accumulation and distribution,plant nitrogen absorption and utilization,and grain yield of wheat organs were analyzed and measured under different treatments during the flowering and maturity stages.The results demonstrated that a highly significant effect of nitrogen application rate and combination (variety) on wheat yield and yield components.Compared with the conventional varieties Jingdong 17,the average yield of Jingmai 21 and BH9613 increased by 10.47% and 4.07% respectively,mainly due to their higher number of spikes and grains per ear.The application of nitrogen fertilizer significantly increased the number of spikes and grains per ear of wheat,but reduced the thousand grain weight.The application of nitrogen fertilizer to four varieties significantly increased the accumulation of dry matter in wheat during the flowering and maturity stages.The dry matter weight of various organs in wheat during the flowering stage was as follows:stem>leaf>spike,and during the maturity stage,it was as follows:grains>stem>spike-stalk+glume >leaf.The average values of nitrogen fertilizer agronomic utilization efficiency and nitrogen fertilizer partial productivity under different nitrogen application rates were as follows:Jingmai 21>BH9613>Jingdong 17>BH3606,which was consistent with the yield trend.The 15N atomic percentage of the four combinations (varieties),the nitrogen content from fertilizer,and the proportion of nitrogen from fertilizer all showed the following order:grains>straw,and they significantly increased with the increase of nitrogen application rate.Compared with Jingdong 17,the proportion of soil nitrogen in the three hybrid combinations (varieties) significantly increased,indicating that hybrid wheat had stronger tolerance to barrenness from the perspective of nitrogen utilization.After comprehensive consideration and analysis,the nitrogen application rate of N240 significantly increased wheat yield compared to other treatments,making it the optimal nitrogen fertilizer application rate for wheat cultivation.The comprehensive performance of the two hybrid combinations (varieties) of Jingmai 21 and BH9613 is better than the performance of the control Jingdong 17.

  • QIN Yi, LIU Yong, XIONG Xinghua
    Abstract (612) PDF (78) RichHTML (12)

    To investigate the function of lysophosphatidicacid acyltransferase 2(LPAT2)in Brassica napus,from which one copy(A07)of BnaLPAT2 was cloned by PCR.we constructed the overexpression vectors p35S∷BnaLPAT2-A07 and the seed-specific expression vector pNapin∷BnaLPAT2-A07,and by utilizing Agrobacterium-mediated genetic transformation method,obtained a total of 15 and 11 transgenic Brassica napus cv.Zhongshuang 6 respectively by PCR positive detection.Real-time Quantitative PCR(qRT-PCR)showed that the transcript levels of BnaLPAT2-A07 in most tissues of T3 overexpressed rapeseed were higher than that of CK.However,in the seed-specific expression tissues of T3 transgenic rapeseed,the BnaLPAT2-A07 genes were strongly expressed in the development and maturation stages of silique.Soxhlet extraction results showed that the oil content in the transgenic seeds driven by the 35S or Napin promoter accumulated 1.39 and 2.36 percentage point more oil than control seeds,respectively.The fatty acid components of transgenic rape were detected by gas chromatography.Compared with CK,the content of linolenic acid was increased by 3.13 and 1.47 percentage point,respectively.Taken together,the BnaLPAT2-A07 could promote seed oil synthesis,however,the specific selection function of BnaLPAT2-A07 for linolenic acid needs to be further verified.

  • LIN Jing, SHI Xiaolei, XU Junjie, YU Cuihong, CAO Zhimin, TANG Xiaodong, YANG Chunyan, ZHANG Mengchen, YAN Long
    Abstract (593) PDF (62) RichHTML (20)

    Soybean mosaic virus(SMV)disease can cause significant yield losses and quality deterioration in soybeans,and breeding resistant cultivars remains the only effective strategy for SMV control.Identifying the functional genes associated with SMV resistance provides essential genetic resources for developing resistant varieties.Six MATE candidate genes involved in SMV resistance were identified using a near-isogenic line(NIL)of the qTsmv-3 locus and a transgenic Arabidopsis thaliana plant.A total of 128 MATE family genes were predicted in the soybean genome,which were classified into five subfamilies.Notably,all six MATE candidate genes located at the qTsmv-3 locus clustered within subfamily Ⅰ,exhibiting significant differences in expression levels and tissue specificity based on public data.Among them,Glyma.03G005600 showed the highest expression in aerial tissues(leaves and stems),while Glyma.03G005800 was predominantly expressed in underground tissues(roots and nodules).Following SMV inoculation,the resistant NIL(#NIL-NC)exhibited a 70% reduction in viral accumulation compared with the susceptible line(#NIL-SMC).Concurrently,the expression levels of GmICS1 and GmPR1,key genes in the salicylic acid(SA)-mediated defense pathway,were upregulated by 2.40,15.16 folds,respectively,in #NIL-NC,indicating that qTsmv-3 confers resistance through SA-dependent signaling.Among the 6 MATE candidate genes,only Glyma.03G005300 and Glyma.03G005600 displayed significant differential expression between NILs,which were down-regulated by 61.0% and 82.1%,respectively.Considering their expression patterns and responses to SMV infection,Glyma.03G005600 was identified as the most promising candidate gene for qTsmv-3.Further,the expression of GmICS1 and GmPR1 in transgenic Arabidopsis thaliana(OE_MATE),which carrying Glyma.03G005600,was significantly up-regulated by 4.22,9.12 folds compared with that of wild type(WT)after UV-B stress.These results strongly indicated that Glyma.03G005600 could significantly enhance or affect the expression of genes in salicylic acid signaling pathway,and preliminarily confirmed that Glyma.03G005600 was a key regulatory gene for qTsmv-3 locus.In all,the results laid a foundation for cloning the key genes regulating SMV resistance and provided gene resources for genetic improvement of SMV resistance in soybean.

  • CUI Yiping, LI Linglong, CHEN Dongyang, QU Zhanfan, WANG Huazhong
    Abstract (581) PDF (336) RichHTML (58)

    The hexameric Paf1 (RNA polymerase Ⅱ associated factor 1) complex is a crucial transcription regulator in eukaryotes.Paf1-regulated expression of specific genes in plants is closely related to diverse biological processes including growth,development,and stress responses.In order to get information on the responses of Paf1 to abiotic stresses in common wheat,homologous sequence searches were performed to identify all of the genes encoding each of the Paf1 subunits in the wheat genome.mCherry fusions of the wheat Paf1 subunit proteins were expressed in protoplasts and tobacco leaves for determination of protein subcellular localization by fluorescence microscopy.qRT-PCR assays were conducted to profile the expression of wheat Paf1 subunit genes in response to different abiotic stresses.The results showed that,in wheat,five of the Paf1 subunits,TaVIP3,TaVIP4,TaVIP5,TaVIP6,and TaPHP,were each encoded by one set of homeologous genes while the sixth subunit TaVIP2 was encoded by two sets.Plant VIP2 sequences had an N-terminal proline-rich region with variable length,and wheat TaVIP2 sequences had an additional glutamine-rich region.Protein subcellular localization assays revealed the nuclear localization of TaVIP2,TaVIP4,TaVIP5,and TaVIP6 proteins and the nuclear and cytoplasmic localization of TaVIP3 and TaPHP proteins.Gene expression analyses revealed similar tissue-dependent constitutive expression variations and similar stress-induced expression patterns of wheat Paf1 subunit genes.These genes coordinately responded to the stress of high temperature by expression upregulation and to the stresses of salt and drought by expression downregulation.Collectively,our results suggested the involvement of expression regulation of Paf1 subunit genes in the responses of wheat to abiotic stresses.

  • LI Tian, WANG Daojie, ZHANG Xiaojuan, HOU Yangzi
    Abstract (544) PDF (50) RichHTML (13)

    Metacaspase (MC) belongs to arginine/threonine specific protease,studies have shown that it plays a role in programmed cell death.To investigate the distribution of MC family genes in the genome of Brassica napus and whether they respond to drought stress,this study systematically analyzed the physicochemical properties,phylogeny,gene structure,conserved domains,cis-acting elements,and expression patterns of MC family genes under drought(PEG6000)and abscisic acid(ABA)stress in B.napus.A total of 25 BnMC genes were identified.Chromosomal localization showed that the 25 BnMCs were distributed on 13 chromosomes.Subcellular localization prediction showed that 17 members of the BnMC family were localized in the nucleus and seven members were in the cytoplasm.The phylogenetic tree classified BnMC into two major classes (Type Ⅰ and Type Ⅱ) and four branches (Group A,Group B,Group C,and Group D).BnMCs of the same branch had similar gene structure and conserved motif distribution.The core promoter regions of BnMC contained four types of cis-acting elements:light response element,phytohormone response element,plant growth and development response element and stress response element.Among all the cis-acting elements related to abiotic stress responses,the abscisic acid response element (ABRE) was the most abundant,with a total of 79.All members contained this cis-acting element.The transcriptome sequencing revealed that the expressions of BnMC10,BnMC22,BnMC1,BnMC12 and BnMC8 were up-regulated and the expressions of BnMC4 and BnMC5 were down-regulated after drought treatment.The qRT-PCR assay showed BnMC10,BnMC8,BnMC1 and BnMC12 genes were expressed in both roots and leaves and were up-regulated by both PEG6000 and ABA,with BnMC1 showing the most significant up-regulating changes.In summary,the response of B.napus to drought stress involves the regulation of the expression level of MC family genes.

  • GUO Xiulin, QI Runsi, MENG Xiangzhao, ZHANG Huaning, MA Zhenyu, DUAN Shuonan, LI Guoliang, LIU Zihui, SHANG Zhonglin
    Abstract (543) PDF (305) RichHTML (64)

    As a key regulating factor in response to various abiotic stresses,plant heat shock transcription factor (Hsf) has a big family,and diverse structure,characteristics and functions.Hsf not only directly regulates Hsp and other relative gene expression and participates in the processes of response and adaption to various abiotic stresses,but also mediates many life activities regulation.Since the first Hsf was cloned from yeast in the 1980s,more and more Hsfs from other species have been identified and studied.In the previous reports,the identification of the Hsf family in plants was performed only in model species such as Arabidopsis and tomato.Furthermore,the studies is mainly focused on the HsfA subfamily,with few studies on the HsfB subfamily.And,the precise function of HsfC family is also largely unknown.With global climate change,the frequent occurrence of extremely high temperature events has seriously threatened the yield and quality of wheat,maize and other crops.To deal with the threat posed by heat stress,unraveling the mechanism of thermotolerance,identifying functional the targeted Hsfs and improving stress tolerance of crop through biotechnology methods is important.The number of Hsf family in field crops is various,the genome is complex,and the related research started lately compared with model species.To this end,our laboratory began to study the Hsf family of crops in 2009.Based on the latest genomic information,we confirmed the number of members,the modular structure and the spatio-temporal expression pattern of Hsf family.At the same time,with the help of transgenic wheat and mutant by genetic transformation and the CRISPR/Cas9 clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein mediated genome editing technology,several Hsfs were cloned and their regulatory functions of thermotolerance were identified,and some mechanism of thermotolerance was clarified.Our research not only enriched the theoretical basis of thermotolerance,but also provided new germplasm for biological breeding.At present,many studies have reported on functional identification and transcriptional regulation of Hsfs,however,evidences lack on which upstream component mediate Hsf's participation in regulation of thermotolerance,and the related mechanism is still unknown.Based on previous research results about wheat and maize Hsf families of lab,and many relative reports published in public,we reviewed the roles and mechanisms of plant Hsf in regulating process reported in recent years,aiming to promote research in illustrating the extensive and special roles and regulation network of plant Hsf family further,and dig useful genes and selective QTLs for biological breeding for plant thermotolerance.

  • LIU Haichen, ZHANG Junmin, JIAO Bo, WANG Jiao, DONG Fushuang, YANG Fan, ZHAO Pu, MA Chunhong, CHAI Jianfang, ZHOU Shuo
    Abstract (542) PDF (144) RichHTML (14)

    Although high-throughput KASP markers have been developed for the wheat quality subunit 7OE,they are different from the KASP markers developed by SNP,the problem of not being able to effectively distinguish between homozygous and heterozygous remains.To clarify the issue of whether the 7OE subunit is homozygous,this study used Jinqiang 6(containing 7OE+8* subunits)and Kenong 199(containing 7+9 subunits)and hybrid offspring as materials,and used the Waxy-D1 gene of wheat as an internal reference gene.The relative copy number of the 7OE gene to the reference gene was detected by quantitative PCR using the universal dual-color fluorescence used in KASP markers to determine whether the 7OE gene exists and whether it is homozygous,and the detection results were verified by a relevant molecular marker.The results showed that the relative copy number of the parent Jinqiang 6,with the 7OE gene,was the highest,the relative copy number of the parent Kenong 199,without the 7OE gene,was 0,and the relative copy number of their hybrid F1 generation was intermediate,and the three types were easily separated.In its F2 segregating population,the relative copy numbers of the 7OE gene were also easily divided into high,medium and 0 three types.The genotypes that were detected as homozygous and heterozygous for the 7OE gene were further detected by the PCR marker of the 9 subunit(which can detect 9 subunit and the 8* subunit that are closely linked to the 7 subunit and the 7OE subunit,respectively),and the results were completely consistent.The high-throughput 7OE universal dual-color fluorescence quantitative PCR marker established in this study can accurately distinguish whether the 7OE subunit is present,and whether it is homozygous,which has a positive effect on promoting the molecular marker-assisted selection of high-quality subunit 7OE.

  • CAI Xiao, LIU Cunjing, ZHANG Sujun, LI Xinghe, WANG Haitao, TANG Liyuan, ZHANG Jianhong
    Abstract (537) PDF (213) RichHTML (47)

    Light-harvesting chlorophyll a/b binding proteins are important in plant photosynthesis and abiotic stress response.To study the characteristics of GhLhcb2A1 and its expression patterns and functions in low temperature and drought response in upland cotton,full-length CDS of GhLhcb2A1 gene was cloned from the leaf cDNA of Jimian 262 by PCR.Bioinformatic analysis was conducted to learn the basic characteristics of the gene.The expression patterns and functions in low temperature and drought response were evaluated by qRT-PCR and virus-induced gene silencing.It was shown that the length of GhLhcb2A1 CDS was 798 bp,encoding 265 amino acids.GhLhcb2A1 was highly expressed in leaves and was significantly up-regulated in leaves and roots under low temperature and drought treatment.Compared with the control,its expression maximized at 3 h under low temperature and drought in leaves with 17.42 and 30.03 folds increase respectively,whereas maximized at 6 h under low temperature and 12 h under drought in roots with 11.65 and 65.04 folds respectively.Subcellular localization assay verified that GhLhcb2A1 was expressed in the chloroplasts of cells.Compared with the control plants,GhLhcb2A1 silenced plants showed a more severe phenotype of water loss and dryness under both low temperatures and drought.The accumulated malondialdehyde content in the leaves of the silenced plants was significantly higher than that of the control,while the proline content and superoxide dismutase activity were significantly lower than those of the controls,suggesting that GhLhcb2A1 silenced plant reduced the resistance to low temperature and drought.The above results implied that this gene played a positive role in regulating low temperature and drought response.

  • LU Zhenhua, LIANG Chen, ZHANG Li, TONG Kexin, CHEN Xiaoqiang, LI Ming, DING Bo, QIU Lina, XIE Xiaodong, WANG Junbin
    Abstract (531) PDF (172) RichHTML (32)

    To elucidate the role of WRKY transcription factor family members in the dynamic regulation of wheat growth and development,as well as in responses to abiotic stresses,this study investigated the expression patterns of TaWRKY gene under drought,high salinity,and low-temperature stress conditions.Using the common wheat cultivar Chinese Spring as the experimental material,we obtained the TaWRKY70 gene through molecular cloning.The coding sequence of TaWRKY70 was 885 bp in length,encoding a 294-amino-acid hydrophilic and unstable protein.Bioinformatics analysis revealed that the protein possessed a typical WRKYGQK conserved domain and a C2HC-type zinc finger structure,classifying it as a Group Ⅲ WRKY transcription factor.Cis-regulatory element analysis of the TaWRKY70 promoter region identified regulatory elements involved in responses to methyl jasmonate,abscisic acid,and ethylene.Co-expression gene analysis suggested that TaWRKY70 was associated with multiple stress response processes in wheat,including hormone signaling,defense against microbial pathogens,and responses to cold stress.Phylogenetic analysis indicated that TaWRKY70 shared a close evolutionary relationship with WRKY70 proteins from other Poaceae species,such as barley,maize,sorghum,and foxtail millet.Subcellular localization experiment further confirmed that TaWRKY70 was localized in the nucleus,consistent with the characteristics of a transcription factor.Expression pattern analysis showed that TaWRKY70 was expressed in wheat roots,stems,leaves,young spikes,and grains,with higher expression levels observed in roots and leaves.Under abiotic stress conditions,TaWRKY70 expression was downregulated in response to abscisic acid and low-temperature treatments but upregulated under salicylic acid,NaCl,PEG6000,and high-temperature treatments.In conclusion,the cloning of TaWRKY70 gene and analysis of its expression pattern provide a basis for the next step to analyze the molecular mechanism of TaWRKY70 involved in wheat stress resistance.

  • CHEN Yuehan, WEI Yu, FENG Yan, ZHAO Li, YAN Long, YANG Qing, LIU Zhi
    Abstract (529) PDF (78) RichHTML (21)

    The soybean germination stage is greatly affected by low-temperature stress,which can have a significant impact on yield.In order to explore genes related to the response of soybean germination to low-temperature stress and investigate the biological processes underlying soybean germination tolerance to cold,this study conducted transcriptome sequencing on seeds germinating for three days from eight materials showing significant differences in low-temperature tolerance during germination.Differential expressed genes (DEGs) between materials tolerant and sensitive to low temperatures were identified and subjected to GO enrichment analysis,KEGG pathway enrichment analysis,and transcription factor analysis.Among 231 DEGs identified in 15 contrasting groups of low-temperature tolerance,159 DEGs were up-regulated and 72 DEGs were down-regulated in cold-sensitive soybeans.GO enrichment analysis revealed that DEGs were mainly involved in biological processes such as cellular processes (GO:0009987),metabolic processes (GO:0008152),biological regulation (GO:0065007),response to stimulus (GO:0050896),binding (GO:0005488),transporter activity (GO:0005215),and transcription regulator activity (GO:0140110).KEGG pathway enrichment analysis indicated that DEGs were significantly enriched in starch and sucrose metabolism pathways (ko00500).Genes involved in seed development (Glyma.03G144400, Glyma.19G147200,Glyma.10G027600,Glyma.10G247500,Glyma.20G147600),metabolic reactions (Glyma.05G004300,Glyma.17G086400),and genes encoding glutathione oxidase (Glyma.01G219400) were up-regulated in cold-sensitive materials.Fifteen transcription factors from families such as MYB,AP2/ERF,and NAC were identified among the 231 differentially expressed genes,suggesting that soybeans respond to low-temperature stress during germination by regulating various biological processes,metabolic pathways,and signal transduction pathways.

  • HUANG Juyuan, ZHU Shuming, GU Xue, LI Xiaojin, LI Shunhe, LI Dandan, LI Juan, LI Wencan, WEN Jiancheng
    Abstract (529) PDF (83) RichHTML (5)

    In order to explore the difference in starch composition content and the change of rice digestion rate in rice lines. In this study, the contents of amylose (AC), total starch (TS), rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS)in 126 indica rice strains were analyzed by enzyme digestion method in vitro. And then detected the digestion rate of the cooked rice and estimated the glycemic index (eGI) of 18 rice lines with significant differences in AC,SDS and RS. The results indicated that the starch contents of these lines differ greatly, AC was 4.29%—25.58% with an average of 10.43%, TS was 71.69%—82.45% with an average of 77.73%, RDS was 43.31%—57.47% with an average of 50.07%, SDS was 18.96%—32.56% with an average of 25.26%, and RS was 0.59%—4.87%with an average of 2.39%. There was a certain correlation between eGI values and starch content in different rice lines. The eGI values of high AC were significantly lower than low AC, but it was also found that the eGI values of Diangu 2030 with low AC and Dianpan 3429 with low SDS were also low. The eGI values of high SDS were lower than low SDS, but there were also cases where the eGI values of low SDS were also low. The eGI value of high RS was significantly lower than low RS. The rice digestion rate was fast and the sugar release was the highest of all the rice stains within 30 min after the meal, which continued to decrease after 60 min. The eGI values of the lines with high AC, SDS or RS content were generally lower than those with low starch content. The grain digestion rates were different among the tested rice lines, and it suggested that the digestion rates of rice grain could be affected by other factors except the AC, SDS and RS. These results can offer valuable references for the development of low-GI rice varieties.

  • LIU Yaxin, CHEN Tao, GAO Weidong, GUO Lijian, CHE Zhuo, YANG Delong
    Abstract (519) PDF (128) RichHTML (13)

    The ubiquitination pathway is one of the key signaling pathways in response to drought stress.In order to clarify the biological function of E3 ubiquitin ligase TaSINA101 gene in response to drought stress,the TaSINA61,TaSINA101 and TaSINA105 genes were cloned from JM47,an excellent drought-resistant wheat cultivar,and their sequence characteristics were analyzed by bioinformatics methods,and the expression levels of the three genes in wheat roots and leaves were detected by qRT-PCR under PEG-6000,NaCl,low temperature and ABA treatments.The heterologous expression of TaSINA101 in transgenic rice was used to analyze the biological function of TaSINA101 in response to drought stress.The results showed that the TaSINA61,TaSINA101 and TaSINA105 genes contained one intron and two exons,and the encoded proteins were composed of 282 amino acids.The qRT-PCR expression analysis showed that the expression of these three genes was induced by various abiotic stresses such as drought stress in roots and leaves.Phenotypic analysis of TaSINA101 transgenic rice under drought stress showed that the leaf fresh weight and dry weight, maximum root length, average root diameter and leaf relative water content of transgenic rice lines OE-1, OE-2 and OE-3 were significantly lower than those of wild type,while the relative conductivity of leaves of transgenic rice lines OE-1 and OE-2 was significantly higher than that of wild type.Therefore,TaSINA101 negatively regulates drought stress tolerance in rice.This study provides a basis for in-depth analysis of the biological function of TaSINA101 gene in wheat.

  • ZHANG Qi, TIAN Yantao, XIAO Gang, ZHANG Zhenqian
    Abstract (501) PDF (109) RichHTML (5)

    Yellow-seeded rapeseed is popular with consumers because of the appearance and good quality of rapeseed oil.However,the unstable separation of progeny traits seriously affects its large-scale application.In order to analyze the internal reasons for the unstable separation of yellow-seeded rapeseed traits,the differences in the internal physiological mechanisms between yellow and black seeds in yellow-seeded rapeseed were explored.Yellow-seeded rapeseed(CK)was used as the material to study the differences in agronomic traits,physiological and biochemical indexes,and seed coat color-related genes between yellow(Y)and black(B)seed plants in the separation offspring.The results showed that the rhizome diameter and plant height of Y were larger than those of CK and B.The plant height of B was significantly different from that of CK and Y,respectively,and the rhizome diameter of B was significantly different from that of Y.The disease index of Y was 1.97,and the disease indexes of CK and B were 2.55 and 3.33,respectively,indicating that Y was superior to CK and B in disease resistance.The content of MDA in Y leaves was the lowest at 9—10 leaf stage,and the POD activity in Y and CK flowers continued to increase at flowering stage,indicating that yellow-seeded rape had strong stress resistance.The expression levels of TT18 and TT8 genes in B and Y at 7—8 leaf stage and 9—10 leaf stage were higher than those in CK,and the expression levels of TT18 gene in B and Y at final flowering stage were significantly lower than those in CK.At 28 days after pollination,the expression of MYB47 gene in Y seed was the highest,which was 5.56 times that of CK and 5.79 times that of B,respectively.The expression of TT8 gene was the highest in Y at 21 days after pollination,which was 3.30,2.29 times that of CK and B,respectively.It showed that yellow-seeded rapeseed had obvious advantages in oil content and stress resistance.Therefore,vigorous development of yellow-seeded rapeseed can provide new ideas for improving the supply of rapeseed oil and solving the safety of edible oil in China.

  • LI Wen, YAO Min, HE Dan, QIU Ping, HE Xin, XIONG Xinghua, LIU Zhongsong, QIAN Lunwen
    Abstract (499) PDF (209) RichHTML (16)

    In order to clarify the regulatory network of oil accumulation in Brassica napus and breed oilseed rapeseed varieties with high oil content.The seed transcriptome data of four rapeseed inbred lines at 25,35,and 45 days after flowering were used to identify candidate genes affecting oil content by transcriptome analysis and correlation analysis.Consequently,a total of 1 530 genes were identified exhibiting differential expression across all three period,comprising 986 up-regulated genes and 544 down-regulated genes.GO enrichment analysis of these differentially expressed genes detected 83 lipid biosynthesis genes,79 lipid degradation genes,21 lipid transporter genes and 80 transcription factors.To further analysis of these differentially expressed transcription factors,genes including BnTT8,BnGL2,and BnNAC082 were identified.Combined with the oil content data of 50 semi-winter rapeseed in three different regions over two years,four SNPs were identified in the exons region of the BnNAC082-A03 significantly associated with oil content using genome-wide association studies.Two haplotypes were detected in the region of this gene and BnNAC082-A03_Hap1 corresponding accessions showed significantly higher oil content than that of Hap2.Additionally,it utilized these transcriptomic data to construct co-expression analysis network,and in the sub-network revealed that BnNAC082-A03 was directly connected with BnTT8-A09 and BnGL2-C06,forming a potential molecular regulatory network affecting seed lipid accumulation.

  • LI Mingjing, LUO Rui, ZHANG Chi, GU Xiaohui, WANG Zhiyan, YIN Mingda, SU Zhimin, HUANG Fenglan
    Abstract (481) PDF (46) RichHTML (6)

    The effects of castor cake meal fertilizer on soil fertility and peanut yield and quality were studied.Using the peanut variety Silihong in Northeast China as the experimental material,a two-year field positioning experiment(2022 and 2023)was carried out,with no fertilization(CK),castor cake meal fertilizer(B1:2 520 kg/ha,B2:5 040 kg/ha,B3:10 080 kg/ha),chemical fertilizer(F1:175 kg/ha,F2:350 kg/ha,F3:700 kg/ha),cow manure(N1:3 724 kg/ha,N2:7 448 kg/ha,N3:14 896 kg/ha).A total of 10 treatments were used to analyze the effects on soil fertility and peanut yield and quality.The results showed that the application of castor cake meal fertilizer in 2022 and 2023 could improve soil nutrients to varying degrees.B3 treatment could significantly reduce soil pH value,and the effect of soil organic carbon,total nitrogen,total phosphorus,total potassium,alkali-hydrolyzed nitrogen,basic phosphorus,and available potassium content were the best.Compared with CK,the average increase was 67.58%,64.56%,70.55%,11.33%,75.76%,149.97% and 116.84%,respectively.Compared with CK,chemical fertilizer and cow manure made soil organic carbon,total phosphorus and basic phosphorus content increase by an average of 5.94% and 11.48%,16.67% and 16.67%,33.35% and 23.94%,respectively.The full fruit weight per plant,100 fruit weight,100 grains weight of peanut with B3 treatment were better than that treated with chemical fertilizer and cow manure,which increased by an average of 105.43%,127.91%,19.54% and 22.75%,16.79%,24.17%,respectively.B3 treatment had the highest peanut yield,which was 1 876.22 kg/ha higher in 2023 than 2022.B1 treatment increased the contents of peanut fat and oleic acid and decreased the content of linoleic acid and palmitic acid,compared with CK,the content of peanut fat and oleic acid increased by 6.07 and 4.23 percentage points,and the contents of linoleic acid and palmitic acid decreased by 1.79 and 0.89 percentage points.The contents of soil organic carbon,total nitrogen and alkali-hydrolyzed nitrogen were positively correlated with peanut fat content.The contents of soil organic carbon,total nitrogen and alkali-hydrolyzed nitrogen were significantly positively correlated with peanut yield.In conclusion,castor cake meal fertilizer could improve soil,increase peanut yield and quality.

  • BAI Yujie, ZHAO Ran, CUI Shunli, HOU Mingyu, LI Xiukun, LIU Lifeng, LIU Yingru
    Abstract (475) PDF (39) RichHTML (7)

    This study investigated the impacts of drought on the agronomic,physiological,and biochemical characteristics of peanuts developed a classification methodology for drought resistance,screened the varieties of peanut with drought resistant.Agronomic traits of 27 peanut germplasms under drought stress were measured 30 days after sowing,and drought resistance was graded by correlation analysis,principal component analysis,cluster analysis,and membership function method.Drought-resistant peanut JNH3,intermediate L231,and drought-sensitive L236 were selected for determination of physiological and biochemical indexes and microstructure observation,and different drought-resistant peanut germplasms were identified.The results showed that after drought treatment,the decrease in main stem height ranged from 2.26% to 34.06%,the length of first branches decreased from 1.11% to 57.20%,the main stem base coarse decreased from 1.54% to 38.36%,and the root-shoot ratio decreased from 65.01% to 92.83% under different environments.According to the comprehensive weighted membership function,peanut materials were grouped into three types:drought-resistant,intermediate,and drought-sensitive.Among them, the above-mentioned traits of the intermediate type and the drought-sensitive type peanuts reached a significant level compared with the control. Under drought stress,ROS in functional leaves of peanut increased,and different expressions of ROS were found by NBT and DAB staining,among which NBT and DAB staining were JNH3,L231,and L236 from light to deep,conforming to the classification of drought resistance type.Compared with the control,the POD activity of JNH3,L231,and L236 increased by 42.71%,26.04% and 20.59% respectively,among different varieties,and CAT activity trend was consistent with the above.The SOD activity of JNH3,L231,and L236 increased by 48.01%,63.49% and 73.15% respectively,among different varieties,and the MDA activity trend was consistent with the above.The proline content of JNH3,L231,and L236 was increased by 1.1,1.07 and 1.03 times,and the soluble sugar content of JNH3,L231,and L236 was increased by 44.06%,31.54%,and 38.62% respectively,among different varieties.Under drought stress,peanut root growth was limited,the total root length and total root area were significantly reduced,the root tip cells were partially necrosis,and the degrees were shallow to deep in JNH3,L231,and L236 respectively.

  • DENG Qingyan, LUO Jiangtao, ZHENG Jianmin, PU Zongjun
    Abstract (468) PDF (57) RichHTML (5)

    Fusarium head blight(FHB)is a devastating fungal disease that seriously threatens the safety of wheat production.Marker-assisted selection(MAS)and pyramiding of resistance genes represent efficient strategies for FHB-resistant breeding.To establish a high-throughput screening system for FHB resistance genes and enhance wheat resistance in Sichuan Province,we performed genome-wide genotyping using a 100K SNP array on 14 Sichuan wheat varieties(lines)along with three FHB-resistant genetic materials.Based on the reported genetic linkage intervals of major FHB resistance genes(Fhb2,Fhb4,Fhb5),we identified SNPs co-segregating with Fhb5 or linked to Fhb2,Fhb4,and subsequently developed kompetitive allele-specific PCR(KASP)markers.Results showed that the genetic relationship of 17 wheat varieties(lines)could be clustered into two major groups:two northern wheat-derived resistant materials(NMAS070 and NMAS069)formed an independent cluster distinct from the Sichuan varieties(lines)while the remaining 15 varieties(lines)were clustered together and subdivided into two subgroups.Functional gene profiling revealed FHB-resistant parents carried superior resistance loci,whereas agronomic parents harbored favorable alleles for yield and quality traits.Through SNP screening,we identified 8 critical SNPs within the linkage intervals of Fhb2,Fhb4 and the co-segregation region of Fhb5.These SNPs enabled the successful development of 4,2,and 2 high-specificity KASP marker systems for Fhb2,Fhb4 and Fhb5,respectively.Validation experiments confirmed all KASP markers achieved precise genotyping and were effectively implemented in molecular breeding for FHB-resistance.This study established a high-efficiency KASP marker system for Fhb2,Fhb4 and Fhb5,providing a robust technical platform for improving FHB resistance breeding of wheat varieties in Southwest China.

  • LIU Beibei, SHEN Yuyang, DENG Feifei, CHEN Jianghua, LI Jin, LI Guangkuo, GAO Haifeng, LI Yue
    Abstract (466) PDF (46) RichHTML (3)

    Wheat stripe rust,caused by Puccinia striiformis f.sp.tritici,is a major disease that severely threatens China's food security.Urediniospores are key agents for the reproduction,dissemination,and infection of the pathogen,but the regulatory mechanisms of sporulation-related genes remain unclear.This study aims to screen and validate the function of the candidate gene PsCON6,which is highly expressed during the early infection stage of P.striiformis,to provide new insights into its pathogenic mechanisms.The PsCON6 gene was obtained from P.striiformis via homologous cloning,and its expression pattern during early infection was analyzed using qRT-PCR.Bioinformatics technology analysis of the amino acid sequence,conserved domains and physicochemical properties of the PsCON6 protein.Barley Stripe mosaic virus host-induced gene silencing(BSMV-HIGS)was used to transiently silence PsCON6,followed by measurements of host reactive oxygen species accumulation,fungal hyphal length and area,and pathogen biomass.Subcellular localization of PsCON6 was determined through transient expression assays.PsCON6 was significantly upregulated during the early infection stage of P.striiformis.The encoded protein contained two conserved conidiation-specific protein 6 domains and consisted of 83 amino acids.After HIGS-mediated silencing of PsCON6,the level of reactive oxygen species in the host significantly increased,while the length and area of the fungal hyphae significantly decreased,whereas urediniospore production remained unaffected.Subcellular localization revealed that PsCON6 was localized to the cell membrane.PsCON6 likely participates in regulating hyphal growth in P.striiformis but does not directly influence urediniospore formation,suggesting potential functional redundancy.The research findings provide new targets for revealing the pathogenic mechanism of wheat stripe rust and lay the foundation for further in-depth analysis of its molecular mechanisms.

  • GUO Yong, WEN Li, SHI Lihong, LI Chao, CHENG Kaikai, LUO Hanfang, LI Hairong, ZHOU Guodong, TANG Haiming
    Abstract (462) PDF (181) RichHTML (28)

    Soil nitrogen(N)cycling enzyme activity serves as a crucial indicator for characterizing soil fertility and N transformation.To investigate the effects of long-term application of fertilizers on the soil enzyme activities correlated with N cycling in rhizosphere soil of double-cropping rice fields in southern China,our project was based on a continue 37-year fertilization localization field experiment,including four fertilization treatments:without fertilizer as a control(CK),single fertilizer(MF),rice straw residue and mineral fertilizer(RF),and 30% organic manure and 70% mineral fertilizer(OM).The activities of N cycling enzymes in the rhizosphere soil were measured,and their correlation with soil chemical properties was analyzed.The results were as follows:compared to MF and CK treatments,OM and RF treatments significantly increased the contents of total N(TN),organic carbon(SOC),ammonium N($\mathrm{NH}_{4}^{+}-\mathrm{N}$),nitrate N($\mathrm{NO}_{3}^{-}-\mathrm{N}$)and microbial biomass N(SMBN)in rhizosphere soil,and also increased rice yield.The urease(Ure)and nitrite reductase(NiR)activities of rhizosphere soil in OM and RF treatments were significantly higher than those in MF and CK treatments.The RF treatment significantly increased rhizosphere soil hydroxylamine reductase(HyR)activities compared to the other three treatments,by 21.7%,13.0%,and 8.7%,respectively.This finding shown that OM treatment significantly increased protease(Pro),nitrogenase(Nit),nitrate reductase(NR)and nitrous oxide reductase(Nos)in rhizosphere soil compared to RF,MF and CK treatments.In comparison to MF treatment,OM treatments increased Pro,Nit,NR and Nos activities in rhizosphere soil by 20.0%,26.1%,426.1% and 26.7%,respectively.Nonetheless,the activity of nitric oxide reductase(Nor)on rhizosphere soil was considerably higher in the CK treatment than in MF,RF and OM treatments.Pearson correlation analysis revealed a substantial positive correlation between soil NR,NiR,Nit,Nos,Ure,Pro and soil TN,SOC,$\mathrm{NH}_{4}^{+}-\mathrm{N}$,$\mathrm{NO}_{3}^{-}-\mathrm{N}$,SMBN as well as rice yield.Soil Nor activity was observed to have a significantly negative connection with soil TN,SOC,$\mathrm{NH}_{4}^{+}-\mathrm{N}$,$\mathrm{NO}_{3}^{-}-\mathrm{N}$,SMBN and rice yield.The findings presented above showed that soil chemical properties and yield were substantially related to rhizosphere soil N cycling enzyme activities.Redundancy analysis(RDA)showed that the first order axis could explain 93.34% of the enzyme activity in rhizosphere soil and soil $\mathrm{NO}_{3}^{-}-\mathrm{N}$,TN and SOC contents were the key factors affecting the pattern of rhizosphere soil enzyme activities.Therefore,the long-term application of organic materials such as organic manure and rice straw can enhance soil chemical and biological characteristics,stimulate soil N cycling enzyme activities,and effectively fertilize paddy soils by partially replacing chemical fertilizers.

  • WANG Xinxia, ZHANG Huibin, LIU Yunxiang, LIU Siyu, LAI Youpeng, LI Qiurong
    Abstract (462) PDF (62) RichHTML (8)

    To explore candidate genes for resistance of Aphis gossypii to the insecticide imidacloprid,the transcriptome data of the two strains were obtained and compared with imidacloprid indoor resistant and relatively sensitive lines of Aphis gossypii by using Illumina HiSeq 2500 high-throughput sequencing technology.The gene annotation was performed using the NCBI database,and bioinformatics analysis of the differential genes at the transcriptional level included GO function,KEGG metabolic pathway,and other analyses.The relative expression of eight candidate differentially expressed genes(CYP6a2,CYP6a13,CYP6k1,CYP6j1,CYP4c1,AChE2,CarE and ALP3)was detected using qRT-PCR technology,and the evolutionary relationships of resistance related genes were analyzed.After sequencing and sequence splicing,a total of 70 101 Unigenes were obtained,with an average length of 654.37 bp.29 131,27 861 and 2 993 Unigenes were annotated in NR,GO and KEGG databases,respectively.According to the NR annotation analysis of the differential genes of insecticide resistance and sensitivity strains,a total of 22 differential genes that may be related to insecticide resistance were found,including 9 detoxification enzyme genes(CYP6a13,CYP6k1,CYP6j1,CYP4c1 and ALP3 each,two CYP6a2,two CarE),8 cuticle protein genes(CP)and their precursors(CPP),target enzyme genes(AChE2),2 transcription factors(WRKY1,leucine zipper transcription factor-like protein 1 gene,LZTFL1),one pancreatic lipase-related protein 2 gene(PLRP2)and one multidrug resistance-associated protein gene(MRP).The results of qRT-PCR indicated that the expression levels of CYP6a2,CYP6a13,CYP6k1,CYP6j1,CarE and ALP3 genes in insecticide resistance strains were significantly higher than those in sensitive strains.The phylogenetic tree analysis of CYP,ALP,GST and CP genes obtained by NR annotation indicated that the genetic relationship between the Aphis gossypii and Aphis glycines and Acyrthosiphon pisum was relatively close.We found that 87.50% of the candidate differentially expressed genes in the two strains showed consistent changes in expression levels at the transcriptional and mRNA levels.

  • YU Tianyi, FAN Zhaobo, ZHANG Jialei, LU Ya, WU Juxiang, YANG Jishun, LI Shangxia, WU Zhengfeng, WAN Shubo
    Abstract (458) PDF (54) RichHTML (24)

    To elucidate the molecular mechanisms underlying peanut pod responses to water stress,this study employed pot experiments combined with transcriptomic analysis.Using well-watered conditions as the control, we systematically investigated the effects of periodic drought and waterlogging stress during the flowering-pegging stage on yield,quality,and gene expression in peanut pods. Results demonstrated that both drought and waterlogging stresses significantly reduced peanut pod yield(by 26.43% and 77.69%,respectively)and crude fat content in kernels (by 9.46, 6.71 percentage points,respectively).Transcriptomic analysis further revealed 1 525 and 1 382 differentially expressed genes(DEGs)in the drought-stress and waterlogging-stress groups compared to the control, respectively, with down-regulated expression being predominant in both sets of DEGs. Specifically, drought stress suppressed six key metabolic processes related to lipid and fatty acid metabolism in peanut pods,with 88.38% of associated genes showing downregulated expression,indicating that lipid metabolic disruption may be the primary cause of yield and quality reduction under drought. Waterlogging stress predominantly interfered with pod metabolism and defense functions by downregulating genes associated with catalytic activity,transmembrane transport,redox reactions,and biosynthesis of secondary metabolites.Moreover, KEGG enrichment analysis indicated that metabolic pathways and biosynthesis of secondary metabolites were significantly affected under both water stress conditions. Key gene validation via qRT-PCR corroborated the RNA-seq data, confirming the reliability of the transcriptomic findings. In summary, this research elucidates the molecular basis of peanut pod response to water stress at the transcriptome level, demonstrating that lipid metabolic disruption is the primary factor underlying yield reduction and quality deterioration under drought stress, whereas peanut pods mitigate the adverse effects of waterlogging mainly by modulating the expression of genes associated with redox homeostasis and metabolic pathways.

  • MAO Xinyuan, DU Huaidong, DONG Yue, YU Xueran, WANG Jingwen, LI Peifu
    Abstract (450) PDF (51) RichHTML (10)

    In order to cultivate good quality rice,it utilized 139 rice germplasm resources from home and abroad as materials to analyze the total protein content of rice grains in 2022-2023,combined with 255 501 SNP markers obtained from whole-genome sequencing(depth of coverage of 10×),and performed genome-wide linkage analysis by using a general linear model to avoid the influence of false positives to select the genes with the highest thresholds for haplotype analysis.The genes related to the total protein content of rice grains were predicted based on the results of previous studies and gene function annotation,and the relative expression of the predicted genes was analyzed by Real-time Fluorescence PCR.The results showed that the total protein content of 139 rice seeds belonged to moderate variation,with coefficients of variation of 21.66% and 20.65%,respectively,which conformed to the normal distribution.Through genome-wide association analysis,a total of 55 significant SNPs were obtained in both environments,distributed on chromosomes 1,2,4,5,6,8,11,and 12,of which 16 consecutive and with upstream and downstream intervals of no more than 100 kb SNPs were distributed on chromosome 11.Further haplotype analysis of genes with strong correlation between the upstream and downstream intervals within 50 kb(±50 kb)of the loci of significant SNPs on chromosome 11 was conducted,combined with the results of functional annotation of the genes and the analysis of the relative expression of the seed grain at the irrigating stage,we preliminarily hypothesized that LOC_Os11g08460 was associated with the total protein content of the seed grain of rice,which encodes the Dnak/Hsp70s protein family.In conclusion,candidate gene prediction and haplotype analysis of total protein content of 139 rice germplasm resources using genome-wide association analysis can provide new genes for genetic improvement of rice quality and accelerate the process of rice improvement.

  • ZHANG Xuting, ZHANG Hailong, ZHANG Jiaqian, LIU Yanan, ZHANG Dejian, FU Zengjuan, XUE Chunlei, ZHANG Sainan, SUN Fengcheng
    Abstract (445) PDF (179) RichHTML (3)

    The aim was to elucidate the effects of different foliar fertilizer nitrogen application amounts on nitrogen accumulation,translocation,and utilization in maize.This experiment was conducted in 2021—2022 using a randomized block design,with maize variety Lihe 1 as the research object.No fertilization treatment (CK),conventional root fertilization treatment (CF),foliar nitrogen reduction treatment of 20% (LF1),foliar conventional nitrogen application treatment (LF2),and foliar nitrogen increase treatment of 20% (LF3) were set up to analyze the differences in nitrogen accumulation,translocation,and utilization of maize under different nitrogen fertilizer application amounts,no fertilization and conventional root fertilization.The results showed that the nitrogen accumulation in maize stems and leaves showed a trend of first increasing and then decreasing with the advancement of the growth stage,reaching the maximum value at the tasseling and silking stage.The nitrogen accumulation per plant gradually increased with the advancement of the growth stage and reached its maximum value at mature stage,the nitrogen accumulation per plant was highest in the LF2 treatment.The proportion of nitrogen distribution in leaves was highest before the silking stage;after the silking stage,the proportion of nitrogen distribution in grains gradually increased,reaching its peak at mature stage.The CK had the lowest proportion of nitrogen accumulation in grains,while the LF1 treatment had the highest proportion of nitrogen distribution in grains in 2021,and the LF3 treatment had the highest proportion of nitrogen distribution in grains in 2022.The nitrogen transport rate and the contribution rate of nitrogen transport to grains first increased and then decreased with the increase of nitrogen application amounts,the nitrogen harvest index and nitrogen utilization efficiency decreased with the increase of nitrogen application amounts;in 2021 and 2022,the nitrogen utilization efficiency of LF1 treatment,LF2 treatment,and LF3 treatment was higher than that of CF treatment,and the nitrogen utilization efficiency of LF1 treatment was the highest.The nitrogen absorption efficiency of foliar nitrogen application treatment for two years was higher than that of CF treatment.There were no significant differences in ear length,ear thickness,and ear row number among the treatments.CK had the longest bald tip length,and the row number and hundred grain weight of each nitrogen application treatment were higher than those of CK.CF treatment had the highest biological yield,while LF1 treatment had the highest grain yield and harvest index.The grain yield of each treatment was significantly higher than CK,and the harvest index decreased with increasing nitrogen application amounts.Therefore,maize can achieve better growth effects under LF1 foliar nitrogen application in the central and western regions of Inner Mongolia.

  • GUAN Mingwei, GUO Anqiang, LI Heping, ZHAI Lanju, LI Jiming, LI Aiguo
    Abstract (427) PDF (49) RichHTML (9)

    To explore the disparities in overwintering rates and yields between Brassica napus L.and Brassica rapa L.in the cold and arid regions of the north,as well as to examine the correlation between diverse agronomic traits,yield,and cold resistance-enhancing traits,it utilized 45 B.napus L.and 22 B.rapa L.varieties as subjects.It conducted a statistical analysis of their overwintering rates,average yields and agronomic traits.It also studied seeding density experiments with B.napus L.and B.rapa L.varieties that exhibited similar yield levels,compared root traits between B.napus L.and B.rapa L..The results indicated that among the 67 varieties tested,the average overwintering rate of B.rapa L.(97.59%) was significantly higher than that of B.napus L.(65.87%).The average yield potential of B.napus L.was higher than that of B.rapa L..For B.rapa L.,which was capable of stable overwintering,increasing the seeding density significantly elevated the number of effective plants but did not augment the average yield.Conversely,for B.napus L.,its lower overwintering rate constrained the increase in the number of effective plants,thereby limiting the average yield.B.napus L.with a high overwintering rate exhibited agronomic traits such as higher branching positions and angular density,fewer secondary branches,total branches,and effective siliques per plant after overwintering.Comparison of root traits between B.napus L.and B.rapa L.showed that enlarged root systems,short hypocotyls,and growth points positioned below the ground surface were advantageous traits contributing to the robust cold resistance of B.rapa L..It proposes that breeding density-tolerance B.napus L.with root traits akin to those of B.rapa L.and with growth points situated below the ground surface represents a pivotal breeding direction for enhancing the overwintering rate of B.napus L.,fostering increased rapeseed yield,and ensuring oil supply stability.

  • YANG Yunma, NIE Haoliang, HUANG Shaohui, YANG Huimin, JIA Liangliang, LI Baojun, SI Junyu, YANG Junfang, SUN Yanming, YANG Wenfang, WEN Guochang, PU Yupeng, XING Suli
    Abstract (427) PDF (72) RichHTML (12)

    The aims were to study the effect of maize straw returning on soil fertility and productivity under wheat-maize rotation system in North China,and to explore the best way and suitable amount of maize straw returning.From 2021 to 2023,a field split-plot experiment was conducted in Quzhou County,Hebei Province to compare the effects of different maize straw returning methods and amounts on wheat growth,yield composition and soil organic matter content.There were two treatments in the main area,which were cutting and crushing.The sub-area was the amount of straw returning to the field,4 levels,which were 0,0.5,1.0,and 1.5 times of the amount of maize straw in the year.The results showed that compared with straw crushing,the yield of wheat increased by 4.3% under straw cutting treatment,the number of spikes increased by 7.6%,and the harvest index increased by 1.4%,with all significant difference in 2023.The N content of wheat straw was significantly increased by 0.04 percentage points,the N and P uptake of wheat aboveground were significantly increased by 10.8% and 14.3%,respectively(2022),but the K content of wheat straw was significantly reduced by 0.13 percentage points(2023).Cutting treatment could significantly promote the growth of wheat before and after winter,and the NDVI value at jointing stage significantly increased by 11.9%(2022).Soil pH increased by 0.22 units(2023).With the increase of maize straw returning amount,wheat yield and NDVI value at jointing stage showed parabolic model of first increased and then decreased,the N,P and K absorption of above ground wheat showed a significant downward trend,and soil organic matter showed a continuous significant increase trend.Based on the growth potential and yield of wheat,the suitable returning ratio of straw cutting treatment was 58%—62%,and the suitable returning ratio of crushing treatment was 29%—42%.Under the conditions of this experiment,maize straw cutting returning has obvious advantages in promoting wheat growth,and increasing wheat yield.It can be popularized and applied in wheat-maize rotation areas that 58%—62% maize straw is returned into the soil.

  • HAN Xiaowei, SONG Yuanrui, WANG Zhaobo, ZHANG Jie, LU Zhenyu, TIAN Xuehui, ZHOU Jiangming, LIU Kaikai, LI Shubing, LI Mingjun, LI Wei
    Abstract (420) PDF (80) RichHTML (12)

    This study explored the effects of full-width uniform seeding on the canopy light energy utilization characteristics,dry matter accumulation and transport of winter wheat in saline-alkali land,and clarified the physiological mechanism of high yield and high efficiency,to provide theoretical and practical basis for the promotion of full-width uniform seeding of winter wheat in the Yellow River Delta.In the growing season of winter wheat from 2022 to 2024,Jingyou 368 wheat variety was used as the material,and two seeding patterns of full-width uniform seeding and conventional drill seeding were set up.The differences of yield,dry matter accumulation,dry matter transport,canopy photosynthetically active radiation interception amount and radiation use efficiency under different seeding patterns were analyzed,and the correlation analysis was carried out.The results showed that the yield and spike number of wheat under full width uniform seeding were higher than those under conventional drilling seeding.The full-width uniform seeding achieved extremely significant increases of 18.35% and 46.97% from 2022 to 2023,and 18.71% and 47.21% from 2023 to 2024,respectively.Under the full-width uniform seeding,the wheat stem & tillers number was higher than that under the conventional drilling seeding.From 2022 to 2023,full-width uniform seeding significantly increased the tiller number by 58.83%.From 2023 to 2024,full-width uniform seeding extremely significantly increased the tiller number by 57.30%.The dry matter accumulation of wheat at anthesis stage,dry matter accumulation at maturity stage and dry matter translocation of vegetative organs before anthesis under full-width uniform seeding were higher than those under conventional drilling seeding.From 2022 to 2023,full-width uniform seeding achieved extremely significant increases of 75.78%,41.70% and 109.69%,respectively,and from 2023 to 2024,full-width uniform seeding achieved extremely significant increases of 71.23%,40.81% and 98.07%,respectively.The leaf area index,canopy photosynthetic active radiation interception and radiation use efficiency of wheat under full-width uniform seeding were higher than those of conventional drilling seeding.The full-width uniform seeding in 2022—2023 achieved extremely significant increases of 58.36%,4.11% and 47.17%,respectively,and the full-width uniform seeding in 2023—2024 achieved extremely significant increases of 59.78%,4.11% and 44.00%,respectively.In summary,the full-width uniform seeding of wheat in saline-alkali land improves the canopy light energy utilization performance and tiller productivity by shaping a reasonable population structure and improving the seedbed environment,which is conducive to the formation of plant photosynthetic products and the increase of spike number per unit area,and ultimately achieves high yield of wheat.Therefore,full width uniform seeding is a better seeding pattern for stable and high yield of winter wheat in saline-alkali land of the Yellow River Delta.

  • NIU Ruilai, ZHANG Yue, WEI Yingshi, YANG Yang, QING Yu, CHENG Shuru, ZHU Caiye
    Abstract (419) PDF (116) RichHTML (6)

    The tail type of sheep is a complex trait formed by the interaction of genetic and environmental factors.circRNA is closely related to lipogenesis.To investigate the effect of circular RNA(circRNA)on the tail fat deposition of sheep,transcriptome sequencing and differential expression analysis of sheep tail fat were performed.Candidate circRNA associated with sheep tail fat were screened,and the regulatory network diagram of circRNA-miRNA-mRNA associated with sheep tail fat deposition was constructed,the selected circRNA were located,and their functions were verified.The results showed that a total of 679 differentially expressed circRNA were detected in the transcripts of adipose tissue of two different tail types of sheep,of which 422 were up-regulated and 257 down-regulated.Moreover,GO and KEGG functional enrichment analysis was performed on differentially circRNA target genes,which involved many biological development processes such as DNA metabolism,anatomical structure development,catabolic process,autophagy,carbohydrate absorption process,cell proliferation and lipid metabolism related to fat deposition.Target gene enrichment was involved in cell growth and apoptosis,cell motility,transport and catabolism,signal transduction,transcription and translation,amino acid anabolism and other functions,suggesting that these circRNA may participate in the deposition process of sheep tail fat through the above pathways.The selected differential circRNA_0018 was localized by fluorescence in situ hybridization and verified in the precursor adipocytes.The results showed that circRNA_0018 was a true and stable cytoplasmic ring molecule,and functional verification of circRNA_0018 showed that it could promote adipocyte differentiation.circRNA_0018 may be involved in the process of fat deposition and lipid metabolism in sheep.

  • ZHANG Yuqian, LIU Chunhong, LYU Zhihang, LIAN Chunyang, ZHANG Xuelian
    Abstract (406) PDF (34) RichHTML (1)

    The aim is to establish a rapid and accurate method for detecting Avian hepatitis E virus(aHEV)antibodies.The ORF2 protein of the CaHEV-GDSZ01 strain was expressed in an E.coli prokaryotic expression system and utilized as the coating antigen.The reaction conditions were optimized to determine the optimal working conditions,leading to the establishment of an indirect ELISA method for detecting aHEV chicken serum antibodies.The specificity,sensitivity and repeatability of the method were tested,and compared with Western Blot method,chicken clinical serum samples were preliminarily detected.The results showed that ORF2 protein was successfully expressed and purified,and Western Blot assay confirmed that ORF2 protein could specifically react with aHEV-positive chicken serum.The optimal reaction conditions for ELISA were as follows:ORF2 protein was coated with 200 ng per well at 4 ℃ overnight(12 h);blocked with 5% nonfat milk at 37 ℃ for 1-2 h;serum was diluted at 1∶1 600,incubated at room temperature for 1 h;rabbit anti-chicken IgY-HRP was diluted at 1∶5 000,incubated at 37 ℃ for 90 min;TMB was incubated at 37 ℃ for 20 min.The ELISA method could detect the positive sera of aHEV diluted 51 200 times,and did not cross-react with positive sera of other chicken-borne viruses such as NDV,AIV-H5,AIV-H9,ALV,REV,and MDV.The intra-batch and inter-batch coefficients of variation were both less than 10%,rate between the Western Blot method was 95.12%. Clinical serum samples from chicken farms in different areas of Guangdong were tested by this ELISA method, and the total positive rate reached 66.34%.In conclusion,this study successfully established a simple,effective,specific,sensitive and reproducible serological detection method for aHEV infection,which can provide technical support for the surveillance,prevention and control of aHEV infection at grassroots.

  • FENG Fen, LI Yanxia, WANG Jinpeng, DONG Yiwen, LUORENG Zhuoma, WANG Xingping
    Abstract (404) PDF (104) RichHTML (20)

    In order to investigate the expression pattern and biological function of lncRNA TCONS_00143126 in E.coli type mastitis of cows in depth.This study used cDNA from bovine mammary epithelial cells as a template,and confirmed the presence of lncRNA TCONS_00143126 using PCR cloning and sequencing techniques.Subcellular localization analysis of lncRNA was performed,and potential target miRNAs and genes were predicted.The potential mechanism of its action in bovine mastitis was explored through KEGG pathway enrichment analysis.In addition,LPS was used to induce bMECs to construct an in vitro model of bovine mastitis,and the expression of lncRNA TCONS_00143126 in LPS-induced bMECs at 6,12 and 24 h was detected by RT-qPCR.The results showed that lncRNA TCONS_00143126 was real,and its expression was significantly up-regulated in LPS-induced bMECs,and it was mainly distributed in the nucleus.The results of target gene prediction and KEGG enrichment analysis showed that lncRNA TCONS_00143126 might regulate inflammatory signaling pathways such as JAK-STAT,mTOR and MAPK by targeting miRNAs(bta-miR-133a,bta-miR-193a-5p and bta-miR-375,etc.)and target genes(IFNE,SLC2A10,MEX3B),and then play a role in the inflammation of bovine mammary epithelial cells.

  • CHEN Ke, LIAO Bing, LIU Guoli, HUANG Xiuyan, HE Ping
    Abstract (390) PDF (74) RichHTML (9)

    To reveal the mechanism of drought resistance rice in booting stage,six single chromosome segments substitution lines (SSSLs) constructed from Oryza meridionalis and O.glumaepatula and their recipient parent Huajingxian 74 (HJX74) were used as experimental materials for potted drought treatment.Six biochemical indexes during 0,5,10 days of drought treatment and 5 days of rewatering and 11 agronomic traits after setting stage were measured,and the drought tolerance of 7 materials was comprehensivly evaluated by correlation analysis and principal component analysis.The result showed that under drought stress,there were extremely significant difference in agronomic traits among the 7 materials.There were extremely significant difference between M78-1 and HJX74 in relative panicle length,relative empty grain number and relative grain number per panicle,and there was extremely significant difference between M148 and HJX74 in relative dented grain number,there were extremely significant differences between M107 and HJX74 in relative panicle length and relative number of secondary branches; six drought-tolerant QTLs were identified at booting stage,including qRPL1-1,qRPL2-1,qRNSB2-1,qRNDG11-1,qRNEG1-1,qRGNP1-1,which were distributed on chromosomes 1,2,and 11.The superoxide dismutase (SOD) activity and peroxidase(POD) activity increased by 3.76%—18.20% and 31.88%—100.00% after 5 days of drought,while malondialdehyde (MDA)concentration decreased by 41.07%—81.65%.After 10 days of drought,SOD activity and POD activity decreased by 9.20%—48.53% and 44.74%—79.79%,while malondialdehyde (MDA)concentration was extremely significantly higher than that on the 5th day of drought.Osmoregulatory substances such as proline,soluble sugar and soluble protein continued to increase at the 5 d and 10 d drought treatment stages,and the biochemical indexes basically returned to normal level after 5 days of rewater.The comprehensive analysis revealed that the eigenvector and contribution rates of relative seed setting rate,POD activity and proline were the largest,indicating that these three indexes could better represent the drought tolerance of rice at booting stage.In conclusion,drought stress can affect agronomic traits and biochemical indexes of rice at booting stage,and rice can regulate its metabolic process in response to drought stress.

  • LUAN Chongsheng, HU Leilei, WU Qi, LIN Leili, WANG Xiaoyu, LI Xiaoxiao, CHE Zhao, WANG Xiaobo, SONG He, WU Gong
    Abstract (367) PDF (40) RichHTML (6)

    To investigate the effects of climate warming and combined application of organic and inorganic fertilizer on soybean growth and yield,field experiments were conducted using infrared radiation warming systems to simulate temperature elevation.The experimental design included two temperature levels(T0:Ambient temperature;T1:Warming by 2.9 ℃)and two fertilization regimes(SF:Sole inorganic fertilizer;OF:Combined organic-inorganic fertilizer),aiming to examine the impacts of warming and fertilization practices on soybean dry matter accumulation,photosynthetic rate,leaf enzyme activities,and yield.Results demonstrated that compared to ambient temperature,warming shortened the pre-flowering and post-flowering growth periods by 3—4 d,5—6 d,respectively.Warming significantly reduced leaf nitrate reductase(NR)and glutamine synthetase(GS)activities during the pod-filling stage,decreased leaf area index(LAI)by 9.0%—13.7%,and suppressed net photosynthetic rate,collectively leading to 4.1%—19.3% reductions in post-flowering plant height and aboveground dry matter accumulation.In contrast,the combined organic-inorganic fertilization enhanced NR and GS activities,improved post-flowering photosynthetic efficiency,promoted plant growth,and increased the aboveground dry matter accumulation by 4.1%—15.3% compared to sole inorganic fertilization,with a significant interaction observed between NR and alanine aminotransferase activities.Yield analysis revealed that warming caused 9.7%—16.6%,13.3%—19.0% declines in pods per plant and grains per plant,respectively,resulting in 13.7%—21.1% yield reductions.Conversely,organic-inorganic fertilization increased grains per plant by 12.5% and pods per plant by 9.9%—10.5%,achieving 7.6%—10.8% yield improvements.Notably,significant positive correlations were detected among LAI,photosynthetic rate,nitrogen metabolism enzyme activities,and final yield.These findings demonstrate that climate warming inhibits post-flowering photosynthetic efficiency and aboveground growth in soybeans,while integrated organic-inorganic fertilization partially mitigates warming-induced yield losses through enhancing enzyme activities and photosynthetic performance,providing critical insights for adaptive agricultural practices under global warming scenarios.

  • ZHAO Longfei, ZHANG Jianhua, ZHAO Zengqiang, CAI Shudong, ZHANG Wei
    Abstract (365) PDF (70) RichHTML (25)

    This study explored the relationship between cotton GhERF14 gene and Fusarium oxysporum pathogenicity,analyzed the molecular mechanism of F.oxysporum pathogenicity,and tentatively explored the response of cotton GhERF14 gene to Fusarium wilt disease and its regulatory effect on related resistance genes,to provides some theoretical basis for breeding new cotton cultivars resistant to wilt.Gene cloning and virus-induced gene silencing(VIGS)were used to construct the non-conserved domain interference vector pTRV2-GhERF14.Using Real-time fluorescence quantification(qRT-PCR)technology and VIGS technology,the expression characteristics of GhERF14 and downstream genes related to lignin,ethylene(ET),jasmonic acid(JA),salicylic acid(SA),antioxidant enzymes and disease progression-related protein(PR)were analyzed after F.oxysporum stress and hormone treatment,and the role of GhERF14 in the process of cotton disease resistance was analyzed.The results indicated that inhibition of GhERF14 gene expression could significantly reduce the synthesis of jasmonic acid(JA),salicylic acid(SA)and ethylene(ET)and the expression of genes related to the signaling pathway.After GhERF14 gene silencing by VIGS technology,cotton plants were more susceptible to Fusarium wilt.These results suggested that GhERF14 may play an important role in the pathogenesis and host-pathogen interaction of F.oxysporum.

  • YIN Dongdong, ZHU Mengqi, LAN Mengdie, ZHU Xingxing, YIN Lei, SHEN Xuehuai, WANG Jieru, ZHAO Ruihong, DAI Yin, PAN Xiaocheng
    Abstract (357) PDF (30) RichHTML (3)

    In order to analyze the alterations in the expression profile of circular RNA(circRNA)in chicken liver cancer cells line(LMH)infected by fowl adenovirus serotype 4(FAdV-4),and the regulatory role of circRNA in the FAdV-4 infecting process,transcriptome sequencing was carried out on FAdV-4-infected LMH cells and uninfected ones.Enrichment analysis of GO functions and KEGG signaling pathways was executed for differentially expressed circRNAs,and five randomly selected circRNAs were verified by Real-time Fluorescent Quantitative PCR(qRT-PCR).The results demonstrated that the circRNAs in the infected and uninfected groups were distributed on the preponderance of chromosomes,and their lengths were mainly concentrated between 300 and 1 000 bp.Differential expression analysis identified 72 circRNAs,with 32 showing significantly upregulated expression levels and 40 presenting downregulated expression levels.GO functional analysis revealed that the genes from which the differential circRNAs originated were mainly enriched in processes such as cellular processes,metabolic processes,catalytic activity,and nucleic acid-binding transcription factor activity.KEGG pathway analysis indicated that the differentially expressed circRNAs were primarily enriched in the Notch signaling pathway,RNA degradation,and the MAPK signaling pathway.The qRT-PCR results showed that the expression levels of the five verified circRNAs were consistent with the sequencing results,further validating the reliability of the sequencing results.This study analyzed the expression profile of circRNAs in FAdV-4-infected LMH cells and screened out differentially expressed circRNAs,providing data support for exploring the functions of circRNAs during the FAdV-4 infection process and the interaction mechanism between the host and FAdV-4.

  • YANG Tingting, LI Jing, ZHANG Ruilian, CHEN Juan, YAN Suhui, WANG Jianlai, LI Wenyang
    Abstract (348) PDF (67) RichHTML (7)

    To explore the effects of nitrogen application rate on nitrogen uptake and translocation characteristics,nitrogen use efficiency,and the formation mechanisms of yield and quality in soft wheat under weak light stress during the after anthesis stage,under pot conditions,the soft wheat variety Quanmai 725(QM725)was used as the material,and the 15N tracer method was used.Two nitrogen rates were set in the experiment,namely N1(N 120 kg/ha),N2(N 180 kg/ha),and two shading treatments were set at the wheat filling stage(7-35 d after anthesis)under each nitrogen application rate,namely CK(no shading),SH(30% shading).The relationship between nitrogen application rate and grain yield and quality of soft wheat under weak light after anthesis was analyzed,and the effects of different nitrogen application rates on nitrogen accumulation,transport,grain yield and quality of soft wheat under weak light after anthesis were studied.The results showed that compared with the control,under the conditions of N1 and N2,the nitrogen accumulation of plants at flowering stage and vegetative organs at maturity stage was significantly reduced by weak light treatment after anthesis,and the proportion of nitrogen from fertiliser was significantly higher than that from soil nitrogen,while the proportion of nitrogen accumulation in grains at maturity stage from soil nitrogen was significantly higher than that from fertiliser nitrogen.Under the same nitrogen application rate,the proportion of basal nitrogen fertiliser was greater than that of topdressing nitrogen fertiliser.Under the same weak light treatment conditions,compared with N1,N2 increased the accumulation of fertiliser nitrogen at flowering stage,the accumulation of total nitrogen and fertiliser nitrogen at maturity stage,and the accumulation of total nitrogen,fertiliser nitrogen and soil nitrogen at maturity stage.Under N1 and N2 treatments,the nitrogen harvest index,nitrogen harvest index,nitrogen production efficiency,grain number per spike,1000-grain weight and grain yield of wheat decreased significantly with the decrease of light intensity after anthesis.The content and accumulation of protein and starch in soft wheat grains increased significantly with the increase of nitrogen fertilizer.However,under the same nitrogen application rate,weak light stress reduced the starch content,protein and starch accumulation in grains.Weak light stress after anthesis significantly affected the nitrogen accumulation of soft wheat plants,reduced the transport efficiency of storage substances from vegetative organs to grains after anthesis,resulting in a decrease in the contribution rate of vegetative organs to grains,which was not conducive to the overall nitrogen transport efficiency of plants.With the increase of nitrogen application rate,the nitrogen harvest index,nitrogen harvest index,nitrogen production efficiency and nitrogen use efficiency of wheat were significantly improved.Under the same nitrogen application rate of N1 and N2,after anthesis weak light stress significantly reduced the accumulation of protein and starch in soft wheat grains,which in turn affected the formation of grain weight,resulting in a decrease in yield.

  • LI Baozhan, ZHOU Meng, DONG Zhixiang, SHEN Longqiang, MA Peng, CHEN Hui, TUO Mingwen, ZHANG Senyu, CHANG Lei, CHAI Yuwei, HUANG Caixia
    Abstract (348) PDF (97) RichHTML (10)

    In order to investigate the effects of different mulching measures on soil moisture and heat status and yield of winter wheat in northwest dry area,winter wheat Kangzhuang 974 was used as test material.From September 2022 to July 2023,three different coverage treatments including wheat straw strip covering three rows(M3),four rows(M4)and five rows(M5)and plastic film covering(PM)treatment were set up in the experimental base of Gansu Agricultural University,The open field(CK)was used as the control.The results showed that:compared with CK,the soil water storage of 0—200 cm during the whole growth period of winter wheat was significantly increased by mulch,the average increase of straw strip mulch was 13.22%,the increase range was M3>M4>M5,and the PM increased by 19.65%.The soil moisture increasing effect of mulch increased gradually with the progress of growth stage,and the maximum increase was 37.53—87.76 mm at maturity stage.It decreased with the deepening of soil layer,and the increase of 0—20 cm was the largest,ranging from 5.10—9.48 mm.Mulching significantly reduced the total water consumption and total water consumption intensity during the whole growth period,and the influence of mulching on water consumption and total water consumption intensity during the later growth period was most obvious.Compared with CK,wheat straw strip mulching significantly reduced the soil temperature of 0—25 cm during the whole growth period by 1.60—2.70 ℃,and M3 treatment had the largest decrease.The maximum decrease occurred at the grouting stage(3.67 ℃),and the maximum decrease between soil layers(3.01 ℃)occurred at 5 cm.Compared with CK,PM significantly increased the soil temperature from 0 to 25 cm during the whole growth period by 1.50 ℃,and the overwintering period and 5 cm had the largest increase,which were 2.20,1.79 ℃,respectively.The temperature of straw mulch increased at 7:00 at wintering stage,jointing stage and ripening stage,and the temperature increased and decreased at other times.PM temperature increased at all time except at 14:00 in grouting stage and ripening stage.Compared with CK, the yield and water use efficiency of M5 and PM were increased by 8.67%, 26.49% and 0.96, 2.94 kg/(ha·mm), panicle number was the most significant factor(CV=17.67%).Yield was significantly positively correlated with spike number(r=0.754**),WUE(r=0.891**)and soil temperature(r=0.723**),and significantly positively correlated with grain number per spike(r=0.522*).Banded mulching of wheat stalk can achieve both ecological and economic benefits,and M5 is more conducive to the formation of yield.

  • MA Jinge, ZENG Peijun, WAN Shumin, XIONG Xinwei, WANG Zhangfeng, LIU Jing, XU Jiguo, RAO Yousheng
    Abstract (339) PDF (41) RichHTML (5)

    The purpose of this study was to screen the candidate genes and key pathways related to traits at first laying through transcriptomic analysis of liver tissues on laying and non-laying Kangle yellow chickens,and to provide a theoretical basis for studying the molecular mechanisms of laying traits regulation in the liver of chickens.It also provides certain reference for the selection and breeding of Kangle yellow chickens.Three individuals of liver tissues at 154 days of age that had started laying (Group H) and had not started laying (Group L) were selected.Total RNA was extracted using the TRIzol method,and transcriptome sequencing was performed using the Illumina sequencing platform.Differentially expressed genes between the two groups were identified.The differentially expressed genes were subjected to functional enrichment and protein-protein interaction analysis.Nine candidate genes were randomly selected,and their expression levels were verified by qRT-PCR in the livers of the nine individuals.A total of 21 465 genes were detected to be expressed in the liver tissues,and a total of 227 differentially expressed genes were identified,among which 48 were up-regulated and 179 were down-regulated.The qRT-PCR validation results showed that the expression trends of nine genes in the two groups of individuals were basically consistent with the RNA-Seq results,and they showed a decreasing or increasing trend in the H,M(to be laid),and L three groups.Six candidate genes for the age at egg-laying trait were initially identified,namely VTG1,VTG2,VTG3,APOV1,RBP,and RNF186.The five crucial signaling pathways were fat digestion and absorption,cholesterol metabolism,ECM-receptor interaction,estrogen signaling pathway,D-glutamine and D-glutamate metabolism.Six genes and five key signaling pathways were preliminarily identified related to the traits at the first laying of Kangle yellow chicken.

  • HE Zhenrui, ZHAO Wenhua, YANG Yingqing, YANG Mei, ZHOU Erxun
    Abstract (327) PDF (38) RichHTML (1)

    In order to deeply explore the diversity of mycoviruses in Ustilaginoidea virens,this study used an abnormal strain Uv263 of U.virens isolated from diseased rice samples collected from Hainan Province as experimental material to identify potential mycoviruses in this strain,and analyze the relationship between the genome organization and function of mycoviruses.The results showed that strain Uv263 was infected by a novel mycovirus named Ustilaginoidea virens RNA virus 7 (UvRV7).UvRV7 was a double stranded RNA virus with 5 082 bp in total length and 60.29% GC content.UvRV7 encoded two large open reading frames (ORF1 and ORF2),which encoded the coat protein (CP) and RNA-dependent RNA polymerase (RdRP),respectively.The BlastP comparison showed that the RdRP amino acid sequence of UvRV7 shared the highest similarity with that of Thelebolus microsporus totivirus 1,at 48.49%.The results of multiple alignment based on the amino acid sequence of UvRV7 RdRP showed that the RdRP sequence contained a total of eight conserved motifs,among which the most typical GDD motif in the RdRP conserved domain was identified in the Ⅵ motif.The phylogenetic analysis showed that UvRV7 was the most closely related to Thelebolus microsporus totivirus 1 and clustered with representative viruses of the genus Victorivirus in the family Totiviridae.The results of genome organization and evolutionary analyses both indicated that UvRV7 was a novel mycovirus in the genus Victorivirus.Transmission electron microscopy observations showed that UvRV7 formed a spherical viral particle of about 45 nm.Horizontal and vertical transmission experiments showed that UvRV7 could be efficiently transmitted vertically by conidia and efficiently transmitted horizontally between vegetatively compatible strains.Taken together,this study elucidated the genome organization and evolutionary relationships of the novel mycovirus UvRV7 in U.virens,and provided a potential biocontrol agent and theoretical basis for the biological control of rice false smut.

  • LAN Huiqing, MENG Tiantian, ZHANG Xiangqian, WANG Weini, ZHANG Jun, CHEN Liyu, LU Zhanyuan, SUN Xia
    Abstract (325) PDF (174) RichHTML (20)

    The aim was to clarify the effects of different nitrogen application levels on soil organic nitrogen fractions and nitrogen use efficiency in maize fields in the central-western region of Inner Mongolia,so as to provide a reference for the scientific management of soil nitrogen and sustainable development of modern agriculture.Six nitrogen application levels were set up,N0(0 kg/ha),N8(120 kg/ha),N12(180 kg/ha),N16(240 kg/ha),N20(300 kg/ha),and N24(360 kg/ha).The dynamic changes with effects of nitrogen application on soil total nitrogen content,particulate organic nitrogen content,light fraction organic nitrogen content and heavy organic nitrogen content,as well as maize yield and nitrogen use efficiency were analyzed at different soil layers at pre-sowing and post-harvest.The results showed that soil total nitrogen,particulate organic nitrogen,light fraction organic nitrogen,and heavy fraction organic nitrogen content decreased with deepening of the soil layer at the same nitrogen application level;soil total nitrogen content at pre-sowing increased with the nitrogen application levels.Soil total nitrogen content in the N16,N20,and N24 treatments was significantly higher than that in the N0,N8,and N12 treatments at post-harvest.Soil particulate organic nitrogen content of N16 treatment was highest in the 0—10 cm,10—20 cm,and 20—40 cm soil layers at pre-sowing,with 0.14,0.13,and 0.09 g/kg,respectively.At post-harvest,N16 treatment had the highest content in the 10—20 cm,20—40 cm,and 40—60 cm soil layers,with 0.19,0.10,and 0.09 g/kg,respectively.The highest increase of soil light fraction organic nitrogen content of 37.27% was in the N16 treatment,and the highest increase of soil heavy fraction organic nitrogen content of 7.35% was in the N24 treatment,followed by the N16 treatment,at 6.84%.The N16 treatment had the highest maize biological yield of 31 443.50 kg/ha;the highest maize economic yield of 18 526.47 kg/ha;and the nitrogen use efficiency decreased with the increase in nitrogen fertilizer application levels,N16 treatment in the nitrogen harvest index was the highest, at 79.20%.In conclusion,the more suitable nitrogen fertilizer application level in the central-western region of Inner Mongolia should be maintained under 240 kg/ha,in order to achieve the best soil nitrogen management ang crop yield.

  • HUANG Zhiqiang, WANG Weimin, ZHANG Deyin, ZHAO Yuan, ZHANG Yukun, XU Dan, YANG Xiaobin, MA Zongwu, HE Lijuan, CAI Youxin, LIU Xiaoqiang, ZHANG Xiaoxue
    Abstract (316) PDF (102) RichHTML (15)

    Anoctamin 5(ANO5)is a multichannel membrane protein localized in the sarcoplasmic and sarcoplasmic reticulum that primarily plays a role in myosin membrane repair and phospholipid scrambling,mutations in the ANO5 gene can lead to jaw hypoplasia as well as various myopathies.It aimed to investigate the association of SNPs in the ANO5 gene with fat deposition traits in sheep.A population of 1 005 healthy and clearly genealogical Hu sheep male lambs was selected for the study,and PCR amplification and KASPar typing techniques were used to detect the locus polymorphisms of the ANO5 gene in the experimental population and analyze the associations with fat deposition traits.The expression level of ANO5 gene in different tissues was analyzed by qPCR.The results showed that sheep ANO5 gene was widely expressed in a variety of tissues in Hu sheep,and the highest expression of ANO5 gene was found in heart tissue compared with other tissues.Three genotypes of CC,CT and TT with the g.58010 C>T polymorphic locus were detected in the 10th intron of the sheep ANO5 gene.Descriptive statistics showed that the perirenal fat weight was the most different and had the highest degree of variability compared with other fat weights.Correlation analysis showed that fat deposition related traits were positively correlated with growth and feed efficiency traits,and the results of association analyses showed that the polymorphic locus was significantly associated with perirenal fat weight and its related traits in the Hu sheep.Among them,the perirenal fat weight of individuals with CC genotype was significantly lower than that of individuals with TT genotype.In conclusion,the g.58010 C>T mutation locus of the ANO5 gene can be used as a candidate molecular marker for perirenal fat deposition traits in Hu sheep.

  • TIAN Peipei, LI Qingcheng, ZHAO Jiaxin, LI Shuangjing, LU Suhao, ZHANG Yanfei, ZHANG Haiyan, LI Qiaoyun, YIN Guihong, MA Geng, WANG Chenyang
    Abstract (306) PDF (187) RichHTML (7)

    To investigate the effects of delayed sowing on the growth,development,grain yield and quality of wheat,Yunong 907(YN907)and Yunong 922(YN922),two new high yield and high quality wheat varieties,were selected as experimental materials.Three sowing dates were established:October 22nd(S1,the conventional sowing date),October 31st(S2,delayed sowing by 9 days),and November 9th(S3,delayed sowing by 18 days).The study investigated the effects of delayed sowing on the phenological stages,grain yield and flour quality of wheat,and analyzed the relationship between temperature characteristics and wheat yield,and quality under delayed sowing conditions.The results indicated that compared with the conventional sowing date, the full growth period of YN907 and YN922 was shortened with the delay of sowing date in both years. The accumulated temperature before winter and the average daily temperature before heading decreased with the delay of sowing date, while the average daily temperature and effective accumulated temperature after heading increased. The effective accumulated temperature of the full growth period showed a downward trend. The effective accumulated temperature of the full growth period of YN907 and YN922 in S3 treatment was 243.95,222.10 ℃·d lower than that in S1 treatment in 2022—2023, and 136.30,189.40 ℃·d lower in 2023—2024, respectively. The yield and its components decreased with the delay of sowing, with a yield reduction of 6.45% to 17.26%. Compared with the conventional sowing date, the wet gluten content and protein content increased under the delayed sowing conditions.Under the background of climate warming and the scale-up of the agricultural operation,the sowing date of wheat can be adjusted to adapt to the temperature change.YN907 and YN922 had the highest yield on October 22nd.Delaying the sowing date to October 31st could maintain the higher yield level and increase the grain protein content.When the sowing date continues to be postponed,the grain protein content will be significantly increased but the yield will be significantly decreased.

  • FU Penghao, CHEN Ling, LIU Yike, ZHU Zhanwang, TONG Hanwen, ZHANG Yuqing, ZOU Juan
    Abstract (296) PDF (63) RichHTML (4)

    In order to explore the effects of silicon fertilizer on lodging resistance,growth and development,yield,and quality of winter wheat,Kenmai 58 was used as the experimental material.The treatments included 15 kg/ha (Si1) and 30 kg/ha(Si2)silicon fertilizer applied as basal fertilizer,15 kg/ha (Si3) and 30 kg/ha(Si4) silicon fertilizer applied as topdressing at jointing stage,and no silicon fertilizer (CK).The stem lodging resistance at grain filling stage,plant growth,yield,and quality were measured.The results showed that Si4 significantly reduced the plant height,height of gravity center,and the length of the basal second internode.Compared with CK,Si3 increased the thickness of the basal second and third internodes by over 14.7%.Si2 and Si4 increased the plumpness and breaking resistance of the basal second or third internodes by 8.6%—18.7% and by 12.4%—49.2%,respectively.Nevertheless,silicon fertilizer had no effect on the diameter and dry weight of the basal internode.Moreover,silicon fertilizer increased the chlorophyll content (SPAD) of leaves at jointing stage,but had no effect on tillering,productive tiller percentage,dry matter accumulation,harvest index,yield,and main quality indexes.In summary,the application of silicon fertilizer improved the stem lodging resistance by lowering plant height,gravity center height,and basal internode length,while increasing the basal internode thickness,plumpness,and breaking resistance.Silicon fertilizer also increased chlorophyll content (SPAD) without adversely affecting wheat growth,grain yield,or quality.Silicon fertilizer could be applied either as basal fertilizer or topdressing at jointing stage.

  • PU Xiaojuan, LI Yingqi, LUO Haowen, XING Pipeng, LIU Meiying, WU Yizhu, HE Zhenzhen, PAN Shenggang
    Abstract (287) PDF (92) RichHTML (11)

    In order to study the effects of different fertilization treatments on the growth and development of aromatic rice,the present experiment was conducted with Qingxiangyou 19 xiang as the experimental material,and five fertilization treatments were designed,broadcasting compound fertilizer(T1),6 cm deep application of compound fertilizer(T2),broadcasting urea(T3),6 cm deep application of urea(T4),and no fertilizer applied treatment(T5),to explore the impacts of different fertilizer applications on the yield,quality,aroma,photosynthetic efficiency,and several other physiological properties of aromatic rice.The results of the experiment showed that the different fertilizer treatments had significant effects on the yield and quality of aromatic rice.The yields of aromatic rice were significantly higher in the deep-fertilization treatments(T2 and T4)than broadcasting-fertilization treatments(T1 and T3).In addition,the yield of aromatic rice was 19.61%,20.03%,39.57% and 32.28% higher than T5 treatment under T2 and T4 treatments in 2022 and 2023,respectively.In terms of net leaf photosynthetic rate,deep fertilization treatments significantly increased the net photosynthetic efficiency of aroma rice leaves by 25.69%,15.95%,17.83% and 11.28% under T2 and T4 treatments in 2022 and 2023,respectively,compared with T5 treatment.Moreover,2-acetyl-1-pyrroline(2-AP)content,2-AP synthesis-related precursor contents,and major enzyme activities were increased in aromatic rice under the deep fertilization treatments.Compared to the T5 treatment,the 2-AP content was significantly increased in the T2 treatments,reaching 161.31,180.17 μg/kg in 2022 and 2023,respectively.Furthermore,a significant increase in precursor content and major enzyme activities were also observed under deep fertilization treatments.The contents of proline,pyrrolidine-5-carboxylic acid and 1-pyrrolidine were increased by 9.90%,10.08%,4.38% and 8.13%,8.26%,6.06% under T2 treatment in 2022 and 2023,respectively.The activities of pyrrolidine-5-carboxylic acid synthetase and proline dehydrogenase activities were enhanced by 8.72%,27.79%,5.52% and 30.91% under the T2 treatment in 2022 and 2023,respectively.In conclusion,the deep fertilization treatment was able to significantly increase the yield,quality,net photosynthetic rate of leaves and promote the biosynthesis of 2-AP in aromatic rice.

  • MA Jinge, CHEN Yujie, LEI Wenjing, XU Qiao, XU Jiguo, XU Jing, RAO Yousheng
    Abstract (273) PDF (76) RichHTML (8)

    The purpose of this study is to screen candidate genes related to the body weight at 8 weeks age of Kangle yellow chicken based on the omics data,and provide the theoretical foundation for molecular marker-assisted breeding of growth traits in Kangle yellow chickens.It also provides key basic data for improving molecular breeding methods for high-quality broilers and accelerating,the progress of breed selection.To detect SNPs significantly associated with body weight traits at 8 weeks age of Kangle yellow chickens,the body weight was measured from 8 to 22 weeks of age of 434 Kangle yellow chickens.Genome-wide association study(GWAS)was performed using the gene chip technology.Genes in the candidate regions with 2 Mb windows surrounding each significant SNP were found for GO and KEGG function analysis.Combined with the data of transcriptomic sequencing and published literature,key candidate genes related to the body weight at 8 weeks age of Kangle yellow chicken were screened.Two potential SNPs significantly associated with target traits were detected,located on chromosome 2(131 485 613 bp)and chromosome 4(60 413 848 bp).A total of 118 candidate genes were screened near SNP sites.Gene function annotation analysis showed the most significant enrichment of biological processes was retinoic acid metabolism.The significant enrichment of 12 KEGG pathways was found,including fatty acid degradation,tyrosine metabolism and drug metabolism-cytochrome P450.OXR1, RSPO2,EIF3E,TRHR,BMPR1B, ADH1C, MTTP, LAMTOR3, PPP3CA and PDLIM3 were preliminarily identified as key candidate genes for body weight traits at 8 weeks age of Kangle yellow chickens.Two SNPs and 10 key candidate genes were preliminarily identified related to the body weight at 8 weeks age of Kangle yellow chicken.

  • MA Jun, LIAN Kaiqi, SHAN Jinyan, LIU Yuling, LI Xiaolong, ZHAO Liming, LI Xuejun, PENG Renhai
    Abstract (259) PDF (94) RichHTML (10)

    Bone morphogenetic protein 6 gene(bmp6) plays an important role in regulating the formation and development of intermuscular bones in fish.In order to explore the sequence characteristics and expression characteristics of bmp6 gene in Carassius auratus var.Qihe,the coding sequence(CDS) of bmp6 gene was cloned and analyzed by bioinformatics.Through Quantitative Real-time PCR (qRT-PCR) detection,the expression differences of bmp6 gene in different tissues and developmental stages were identified.The results showed that the bmp6 gene of C.auratus var.Qihe was composed of two homologous genes,each with three alleles,namely bmp6a-1,bmp6a-2,bmp6a-3 and bmp6b-1,bmp6b-2,bmp6b-3,with full-length CDS of 1 245,1 257 bp,encoding 414 and 418 amino acids,respectively.Both bmp6a and bmp6b were unstable hydrophobic secretory proteins containing a signal peptide sequence and lacking a transmembrane structure.bmp6a was mainly distributed in mitochondria,nucleus and cytoplasm,while bmp6b was mainly distributed in nucleus and mitochondria.The secondary structure of bmp6a and bmp6b was mainly random coil,consistent with the results of tertiary structure prediction,and both contained one TGF-β-rel family conserved domain.The amino acid sequence homology analysis showed that the amino acid sequence of bmp6a had higher similarity with bmp6 of Megalobrama amblycephala,but lower similarity with mammals.The amino acid sequence of bmp6b had higher similarity with that of C.auratus and C.gibelio.Phylogenetic tree analysis showed that the bmp6a of C.auratus var.Qihe and the bmp6a of Cyprinus carpio were clustered in the same clade,while the bmp6b of C.auratus var.Qihe and the bmp6b of C.auratus and C.gibelio were clustered in the same clade.The results of qRT-PCR showed that bmp6a and bmp6b genes were expressed in brain,muscle,gill,spleen,intestine,ovary,liver and kidney tissues of C.auratus var.Qihe,but the expression levels were higher in liver,gill and kidney tissues.The expression patterns of bmp6a and bmp6b were similar in different developmental stages of juvenile C.auratus var.Qihe.The expression levels of bmp6a and bmp6b were the highest before the ossification of intermuscular spines,and then decreased with the development of intermuscular spines.To sum up,the CDS of bmp6 gene of C.auratus var.Qihe was obtained by cloning,and bioinformatics analysis and qRT-PCR detection were carried out,providing a reference for further creating a new strain of C.auratus var.Qihe without intermuscular bones.

  • WANG Ziming, SI Jihao, ZHANG Wenzhi, MENG Cheng, WANG Zhe
    Abstract (258) PDF (189) RichHTML (34)

    IQM(IQ-motif containing protein),a plant-specific calmodulin-binding protein,plays crucial roles in plant growth,development,and responses to various stresses.In order to study the characteristics and potential functions of the maize IQM gene family,bioinformatics approaches were used to identify IQM genes in the maize whole genome,and protein properties,phylogenetic relationship,gene structure,chromosome location,gene replication,cis-acting element,tissue-specific expression and expression patterns under various stresses were investigated.A total of 11 ZmIQMs genes were identified in the whole genome of maize,named ZmIQM1 to ZmIQM11 based on their chromosomal locations.ZmIQMs genes could be classified into three subfamilies,with genes within different subfamilies exhibiting similar structures.Segment duplication was found to play a major role in the amplification and evolution of the ZmIQMs gene family.Cis-acting element analysis showed that the promoter region of ZmIQMs gene contained multiple hormone and stress response elements.The expression pattern of ZmIQMs genes was investigated,and it was found that ZmIQMs genes had different expression patterns in different tissues,and the expression levels of several ZmIQMs genes were changed under different abiotic and biotic stresses.qRT-PCR results showed that under drought stress,the expression of ZmIQM3,ZmIQM4 and ZmIQM10 was up-regulated, and ZmIQM3,ZmIQM4,ZmIQM5,ZmIQM10 and ZmIQM11 responded to Cochliobolus heterostrophus infection.The results showed that ZmIQMs genes played an important role in stress response.

  • BAI Dongxing, CHEN Xuanyi, ZHANG Xiangqian, GE Guolong, WANG Manxiu, ZHANG Dejian, MENG Tiantian, LUO Fang, ZHANG Chuanling
    Abstract (257) PDF (237) RichHTML (16)

    To clarify the effects of different tillage methods on soil moisture dynamics changes and maize yield under the condition of straw return to field in the black soil area along the foothills of Daxing'anling,based on six consecutive years of tillage positioning experiments,this study analyzed the effects of seven types of tillage methods,namely,full-crushing and deep-tillage (SCD),full-crushing and shallow-tillage (SSS),full-crushing and deep-tillage (SCS),full-crushing and re-harrowing (SCR),full-crushing and rotary tillage (STR),full-crushing and no-tillage (NTS),and conventional tillage without returning straw to the field (CK)on soil moisture characteristics,water consumption,water use efficiency,and agronomic traits and yield of maize in the 0—60 cm soil layer at different growth stages of maize in each treatment.The results showed a bimodal pattern of soil quality moisture content in 2022 and 2023.0—10 cm soil layer soil quality moisture content was significantly higher than that of CK,and the NTS treatment had the highest soil quality moisture content in several periods.10—20 cm soil layer soil quality moisture content was lower than that of CK in the SSS and NTS treatments at the jointing stage,and soil quality moisture content was higher than that of CK in the 20—40 cm and 40—60 cm soil layers in 2022 and 2023 for all the treatments.In 2022 and 2023,maize plant height in all treatments except NTS treatment was significantly higher than CK at different growth stages.The SCD treatment was the tallest and the NTS treatment was the shortest at mature stage.Leaf area index (LAI) varied little among treatments at seedling stage of maize,STR treatment had the highest LAI after the jointing stage,and all treatments had significantly higher LAI than NTS treatment at the big trumpet stage.Dry matter accumulation in all treatments except for the SCS,NTS treatment was significantly higher than in CK,and dry matter accumulation was highest in the SCD treatment and lowest in the NTS treatment at mature stage.All tillage treatments increased maize yield and water use efficiency compared with CK,but the SCD treatment was significantly higher than CK.Comprehensive analysis of the indexes showed that the two tillage methods of full-crushing and deep-tillage and full-crushing and shallow-tillage were favorable to improve soil structure,maize yield and water use efficiency in the black soil area along the foothills of Daxing'anling.

  • HOU Peike, CHENG Yukun, WANG Jiqing, SUN Ling, WANG Jianpeng, GENG Hongwei
    Abstract (238) PDF (154) RichHTML (27)

    Cloning the wheat grain superoxide dismutase(SOD)gene and developing competitive allele-specific PCR(KASP)markers related to SOD activity are of great significance for breeding wheat varieties with high SOD activity.According to the gene ID,specific primers were designed to clone the gDNA sequence of TaSOD-B1 gene.The single nucleotide polymorphism(SNP)loci were obtained by comparing the wheat genome genetic variation and Ensembl Plants database,and the KASP markers closely related to the SOD activity of wheat were developed.The practicability of the markers was verified by the correlation analysis between SOD activity and genotypes of 287 winter wheat varieties(lines).The TaSOD-B1 gene fragment of Chinese spring variety was amplified by six pairs of specific primers,and the TaSOD-B1 gene on chromosome 5B was obtained by splicing.The full length of the gene was 6 491 bp,including an open reading frame(ORF)of 1 650 bp,which encoded a total of 549 amino acids.The predicted molecular weight was 60.80 ku,the gene was composed of 12 exons and 11 introns.The intron conformed to the typical GT-AG structure.The KASP marker was developed based on the 44th base of the first exon of the TaSOD-B1 gene,and was verified by sequencing.The results showed that the genotype of the allelic variation type TaSOD-B1a was AA,which was associated with high SOD activity,and was labeled with the fluorescent gene FAM(shown as blue).The genotype of TaSOD-B1b was GG,which was associated with low SOD activity and was marked with the fluorescent gene HEX(shown as red).The detection of 287 winter wheat varieties(lines)at home and abroad showed that the SOD activity of different genotypes was significantly different.Based on the TaSOD-B1 sequence,a set of KASP markers related to SOD activity was successfully developed and could be used for genetic improvement of SOD activity.

  • ZHAI Xiaoting, WANG Xinwei, HAO Xiying, SHEN Junrui, GAO Xuhong, LIU Guixue, LIU Songtao
    Abstract (233) PDF (214) RichHTML (30)

    Preliminary transcriptomic analysis identified ZmRAV1 as a candidate gene involved in maize's response to drought stress. To further investigate its function, this study cloned the ZmRAV1 gene, conducted bioinformatics analysis of its coding sequence, and overexpressed this gene in Arabidopsis thaliana. The function of ZmRAV1 was validated by assessing the phenotypes and physiological and biochemical indices of the transgenic Arabidopsis lines under drought conditions. The results showed that the ZmRAV1 gene had a total length of 1 176 bp and encoded 389 amino acids.It had the highest proportion of irregular coils in its secondary structure and was a hydrophilic protein that did not contain signal peptides and was non transmembrane.Subcellular localization indicated that the protein was located in the nucleus.ZmRAV1 exhibited high conservation across different species.Phylogenetic analysis indicated that ZmRAV1 shares the closest evolutionary relationship with its homolog in Miscanthus sinensis, showing a high degree of homology. After drought stress treatment,the root length of Arabidopsis thaliana lines overexpressing ZmRAV1 during germination was significantly higher than that of wild-type (WT)lines.In the seedling stage,WT showed withering or even death after drought stress,while the survival rate was lower than that of overexpressing lines.Moreover,the POD and SOD activities of ZmRAV1 overexpressing lines were higher than those of WT after drought treatment,indicating that overexpression of ZmRAV1 gene could enhance Arabidopsis thaliana's resistance to drought stress.

  • PU Xia, LYU Chuntao, ZHANG Yu, XU Huini, YU Diqiu, SUN Xudong
    Abstract (225) PDF (74) RichHTML (10)

    DNA damage significantly hinders impact plant growth and development.NBS1 plays an important role in the cellular response to DNA damage,to analyze the functional difference between NBS1 and its alternative splicing isoform,NBS1-3.Specific primers were designed to clone NBS1 and NBS1-3 from the complementary DNA of Arabidopsis thaliana,and the sequences of the NBS1,NBS1-3 and the three-dimensional structure of the proteins were analyzed.Transgenic Arabidopsis thaliana lines overexpressing of NBS1 and NBS1-3 were generated respectively,and nbs1 homozygous mutant plants were identified,detecting the expression levels of NBS1 in overexpressed lines NBS1 and NBS1-3.To further elucidate the functional distinction between NBS1 and NBS1-3,wild type,mutant and overexpressed plants were treated with 0.6 mmol/L Methyl Methanesulfonate(MMS)and observed damage area.The results of quantitative showed that the expression levels of NBS1 in overexpressed lines NBS1 and NBS1-3 were higher than wild type.PI staining of root tips showed that after 0.6 mmol/L MMS treatment,the mutant showed the highest relative damage area,while the NBS1-3 overexpressed lines exhibited the least damage,followed by NBS1 overexpressed lines and wild type.These results suggest a potentially more important role of NBS1-3 in DNA damage repair compared to NBS1.

  • HE Jiangjiang, JIN Lan, JIN Suriguga, LI Yong, HONG Yu, GAO Feng
    Abstract (222) PDF (93) RichHTML (19)

    The identification and expression pattern analysis of CmPIPs gene family in melon could provide theoretical basis and support for further exploring the function of CmPIPs gene family and the genetic improvement of melon.TBtools,MEME,MEGA X and Plant-CARE tools were used to analyze the bioinformatics of CmPIPs,and the expression level of CmPIP2;7 in the pericarp of melon at different stages after pollination,and the expression level of each member of CmPIPs in different tissues and different concentrations of plant hormone treated young leaves were visualized in the software GraphPad Prism 10.The results showed that CmPIP2;7 and CsPIP2;8 had nearest kinship;the 12 members of the CmPIPs family were mainly distributed on chromosomes 1,3,4,5,9,10 and 11;except that CmPIP2;8 had 3 CDS regions,the other members had 4 CDS regions.The promoter regions of each member of CmPIPs had multiple cis-acting elements,hormone responsive elements,such as auxin,gibberellin,and abscisic acid.The expression level of CmPIP2;7 was significantly up-regulated during rapid development and maturity of melon fruit.Members of various families of CmPIPs were expressed in different tissues of melon.After treatment with 40.0 μmol/L auxin,the expression level of CmPIP2;4 was significantly up-regulated,while the expression level of CmPIP1;1,CmPIP 2;1,CmPIP2;2 and CmPIP2;3 were extremely significantly down-regulated,and when the concentrations of abscisic acid were 0.4,4.0 and 40.0 μmol/L,the expression level of CmPIP1;1,CmPIP2;1,CmPIP2;3,CmPIP2;9 were significantly down-regulated.After treatment with 44.640 μmol/L methyl jasmonate,the expression level of CmPIP2;1 and CmPIP2;5 were significantly down-regulated,while the expression level of CmPIP2;2,CmPIP2;3,CmPIP2;7 and CmPIP2;9 were significantly up-regulated.When the concentration of ethylene glycol was 4.0 mmol/L,the expression level of each member of CmPIPs was significantly up-regulated.The gene structure,sequence characteristics,evolutionary relationship and collinearity of CmPIPs gene family members were clarified,and their expression pattern were analyzed.

  • CHEN Keling, WANG Dequan, SONG Dewei, WANG Dahai, WANG Yuhua, GUAN Ensen, YANG Mingfeng, LIU Jiang, MA Xinghua
    Abstract (214) PDF (171) RichHTML (16)

    In order to provide production advice of high-quality upper tobacco leaves,field experiment was carried out to elucidate the effects of nitrogen application on the growth,development,carbon and nitrogen metabolism of upper leaves of different tobacco varieties.Three treatments,37.5(LN),75.0(MN)and 112.5 kg/ha nitrogen application rate(HN)were conducted with NC89 and Yunyan 87 as the test varieties.The effects of different treatments on the agronomic traits,photosynthetic characteristics,leaf tissue structure,key enzymes activity of carbon and nitrogen metabolism,and chemical composition of the upper leaves of were studied.The results showed that the leaf length,leaf width,leaf area,and leaf dry mass of the upper leaves of both varieties were significantly improved with the increased of nitrogen application rates.At 115 days after transplanting(DAT),the leaf area of NC89 and Yunyan 87 of HN were significantly increased by 63.10% and 68.43% compared to LN,respectively.Increasing nitrogen rate improved the leaf chlorophyll content of NC89,the leaf chlorophyll content of HN was 6.67%—37.50% higher than that of LN,respectively.The leaf net photosynthetic rate was notably improved by increasing nitrogen rate of Yunyan 87,especially at 70 DAT and 80 DAT.The leaf palisade tissue,leaf spongy tissue,and leaf thickness were markedly promoted with the increased nitrogen application rate on 85—115 DAT.The palisade tissue and spongy tissue thickness of LN and MN were almost stable from 95 to 115 DAT,but HN improved by 9.82%—14.08% and 10.72%—13.72% respectively.The leaf carbon content and leaf carbon and nitrogen ratio of both varieties were significantly decreased by reduced nitrogen rate,while leaf nitrogen content significantly increased.The activities of invertase,sucrose phosphate synthase,sucrose synthase,and glutamate synthase of both varieties were increased with the increased nitrogen application rate.HN decreased the amylase activity of Yunyan 87,but increased that of NC89.At 115 DAT,the amylase activity of HN of Yunyan 87 was 27.53% lower than MN,while HN increased amylase activity by 33.86% and 21.74% compared to LN and MN of NC89,respectively.The activity of glutamine synthetase of Yunyan 87 significantly increased with the increased nitrogen application rate,while there was no significant difference among different treatments of NC89.The content of flue-cured tobacco leaf reducing sugar and total sugar were reduced,but the content of nicotine and total nitrogen were improved with increased nitrogen application rate.Under the same nitrogen application rate,the content of flue-cured tobacco leaf nicotine,total nitrogen,and potassium of Yunyan 87 were higher than NC89,while the content of reducing sugar,content of total sugar(except LN),sugar and nicotine ratio,and nitrogen and nicotine ratio were lower than NC89.The effect of nitrogen application rate on upper leaves of tobacco varieties is difference.Increasing nitrogen application rate could promote the growth,development and carbon metabolism,reduce sugar and nicotine ratio and nitrogen and nicotine ratio,and improve the coordination of chemical components of NC89.However,increasing nitrogen application rate could lead to excessive nitrogen metabolism,delay the transformation from nitrogen metabolism to carbon accumulation metabolism,and cause late maturity of Yunyan 87.

  • PENG Zechi, JIANG Haibin, DING Lili, YANG Zhihao, YANG Zhihui, ZHU Jiehua
    Abstract (214) PDF (112) RichHTML (8)

    PHR1 is a crucial factor in balancing plant disease resistance and low phosphorus stress resistance.To investigate the nature and function of the StPHR1 gene in potato and to explore the role of StPHR1 in the process of potato resistance to Alternaria solani infection,the CDS sequence of the StPHR1 gene was cloned by PCR technology using potatoes as the research material,and the structural,physicochemical properties,and phylogenetic relationships of StPHR1 were analyzed and predicted using bioinformatics software,then,the expression level of StPHR1 during the infection of potatoes by A.solani and under different hormone treatments was analyzed using qRT-PCR technology,and subcellular localization analysis of the protein was conducted using laser confocal microscopy technology.The results showed that the CDS of the StPHR1 gene was 1 353 bp,encoding 450 amino acids.The protein had a molecular formula of C2147H3399N595O711S18,a molecular weight of 49.51 ku,and a theoretical isoelectric point of 5.07,encoding a hydrophilic,unstable protein with no signal peptide and no transmembrane structure.Its secondary structure consisted mainly of random coil and α-helix.Phylogenetic tree analysis revealed that the StPHR1 protein was most closely related to Arabidopsis thaliana; conservative domain analysis revealed that the StPHR1 protein,like other PHR1s,possesses both MYB-CC and MYB conserved structural domains at its C-terminus.Relative expression analysis found that StPHR1 was significantly induced by A.solani and salicylic acid,and it was hypothesized that StPHR1 played an important role in A.solani infection of potato and in the response to salicylic acid; and the subcellular localization showed that the StPHR1 protein was localized in the nucleus.It is hypothesized that StPHR1 may regulate potato resistance to A.solani through its MYB transcription factor activity and response to salicylic acid.

  • SUN Ning, BIAN Shaofeng, YAN Weiping, XU Chen, CHEN Xifeng, SONG Hanglin, LI Fei, ZHANG Lihua, TAN Guobo, ZHAO Hongxiang
    Abstract (211) PDF (194) RichHTML (7)

    In order to study the synergistic regulation characteristics of plant growth regulators on canopy-root traits of spring maize and to further reveal the lodging resistant mechanism of the plants,in 2021—2022,with the maize varieties Dika 159(DK159)and Xianyu 335(XY335)as experimental materials,at two planting densities of 75 000,90 000 plants/ha,plant growth regulator treatment (PGR) and water control (CK) were set up to analyze and compare the canopy structure,stem basel internode characters,root morphological characteristics and physicochemical properties of root bleeding sap under different treatments.The results showed that PGR had regulatory effects on both the maize canopy and roots.After PGR treatment,plant height,ear height and center of gravity height decreased,the mean leaf tilt angle above ear increased,light transmittance of ear layer increased by 23.59% on average,light transmittance of basel layer increased by 18.60% on average,and stem quality of basal internode was significantly improved.At the same time,the total root number,root length and root dry weight of PGR treatment increased,the root width at 10 cm below the surface increased,the root bleeding sap flow and nutrient flow increased,and the root morphological characteristics and transport capacity were obviously optimized.The flow of CTK and IAA in the root bleeding sap increased,while the flow of GA decreased.PGR effectively reduced the occurrence of stem lodging and root lodging through the synergistic regulation of canopy and root system,the field lodging rate of maize decreased from 13.43% to 6.47%,and the average yield of maize increased by 16.10%,thus achieving stable and high yield.

  • LIU Xintong, CHEN Huijie, CHEN Shuangshuang, FENG Jing, QI Xiangyu, ZHOU Huimin, JIN Yuyan, SUN Ming, DENG Yanming
    Abstract (210) PDF (73) RichHTML (11)

    To understand the member characteristics of the WRKY transcription factor family in hydrangea and their roles in response to leaf spot disease,this study utilized the bioinformatics method to characterize WRKY family members in Hydrangea macrophylla Endless Summer,and systematically analyzed the protein physicochemical features,gene structure,systematic evolution,collinearity and expression patterns under the infection with Corynespora cassiicola of WRKY family members.The results showed that there were 84 non-redundant HmWRKY members in H.macrophylla genome.All of the HmWRKYs were hydrophilic proteins and unevenly distributed on 18 chromosomes of H.macrophylla,encoding 112—1 046 amino acids.In addition,HmWRKY members were divided into 3 subgroups(Group Ⅰ—Group Ⅲ),which contained a conserved DNA binding domain composed of WRKYGQK and C2H2.The sequence length of HmWRKY varies greatly from 512 bp to 40 338 bp,and 8 collinear gene pairs with Ka/Ks ratios less than 1 were detected,indicating that the HmWRKY family experienced purification selection in evolution.18 HmWRKY members showed significantly differential expression after infection with C.cassiicola,of which 9 up-regulated and 9 down-regulated.The results indicated that these HmWRKY genes might play important roles in response to leaf spot disease of hydrangea.

  • WANG Tongtong, WANG Wenjing, DONG Xinyu, SONG Jiafeng, SHENG Suao, CHENG Jielan, ZHENG Tingting, LYU Zhaoyan, ZHU Xiaobiao, HOU Hualan
    Abstract (209) PDF (78) RichHTML (11)

    Chalcone synthase(CHS)is an important structural gene that regulates the early biosynthesis of flavonoid pathways in plants,and plays a role in plant growth and development and stress response.Previously,the key genes StCHS4 and StCHS5 for anthocyanin biosynthesis were identified in the potato CHS family by expression analysis.To further explore the function of potato StCHS4 and StCHS5 in the biosynthesis of flavonoids and anthocyanins,the characterization of StCHS4 and StCHS5 proteins was analyzed by online website.The 35S∷StCHS4-GFP and 35S∷StCHS5-GFP recombinant vectors were constructed by homologous recombination method based on the pRI101 binary vector,and then were transformed into Agrobacterium GV3101 strain.The subcellular localization of StCHS4 and StCHS5 proteins was determined by transient transformation of Nicotiana benthamiana.N.tabacum was used as the experimental material for transient overexpression and stable genetic transformation to analyze the content of total flavonoids and anthocyanins after overexpression of StCHS4 and StCHS5 genes.The results showed that the secondary structures of StCHS4 and StCHS5 proteins were mainly α-helix and random coil.StCHS4 was an unstable hydrophilic protein,and StCHS5 was a stable hydrophilic protein.The sequence alignment revealed that StCHS4 and StCHS5 had a close relationship with the CHSs of Capsicum annuum and Solanum lycopersicum,respectively.The results of subcellular localization revealed that StCHS4 and StCHS5 proteins were localized in the cytoplasm and cell membrane.In transient overexpression of tobacco,StCHS4 and StCHS5 genes significantly enhanced anthocyanin accumulation at 3—5 days after injection.Three transgenic N.tabacum lines of StCHS4 and StCHS5 gene were obtained,respectively.Compared with the wild type,the expression of StCHS4 and StCHS5 in transgenic plants was significantly higher,and the contents of total flavonoids and total anthocyanins were higher than those in the wild type.The total flavonoid content in StCHS4-OE3 and StCHS5-OE1 transgenic plants was significantly increased.The anthocyanin content in StCHS5-OE1 and StCHS5-OE2 plants increased by 89%,131%,respectively.The above results demonstrated that StCHS4 and StCHS5 were the key CHS genes in the flavonoid pathway of Solanum tuberosum,and the overexpression of StCHS4 and StCHS5 contributed to the biosynthesis of anthocyanins and flavonoids.

  • LI Ziyu, YAO Yurong, HAO Yongjuan, HUO Jianfei, BEN Haiyan, WANG Xudong, WANG Wanli, YAO Xingwei, LI Erfeng
    Abstract (206) PDF (154) RichHTML (6)

    To investigate the transcriptome differences between resistant and susceptible varieties of cauliflower after inoculation with Xanthomonas campestris pv.campestris (Xcc),and to identify genes associated with cauliflower resistance to black rot disease,the susceptible variety Y1-2 and the resistant variety EC-247 of cauliflower were selected as the research subjects.Total RNA was extracted from cauliflower leaves at 0,1,3,and 5 days post-inoculation with Xcc,respectively.High-throughput parametric transcriptome sequencing was then conducted utilizing the Illumina RNA-Seq platform,followed by Real-time Quantitative PCR for validation of selected differentially expressed genes(DEGs).DEGs associated with disease resistance were screened and analyzed.The findings revealed that 6 355 genes exhibited significant differential expression between resistant and susceptible cultivars across the four time points.KEGG enrichment analysis focused on plant disease resistance pathways,identifying 47 genes involved in plant-pathogen interactions and 61 genes related to plant hormone signaling.Cluster analysis of these gene expression levels disclosed specific genes,including one CDPK,four CMLs,one PTK,one CaM,one RLK,and one SGT1 in the plant-pathogen interaction pathway,and three auxin-responsive protein genes,a TIFY gene,an indole-3-acetic acid-amido synthetase gene,two brassinazole-resistant protein genes,and a Shaggy-associated protein kinase zeta gene in the plant hormone signaling pathway.Notably,the expression of these genes was significantly higher in resistant varieties compared to susceptible ones,indicating their active response to pathogen infection at various time points.The results indicated that these differential genes might be related to disease resistance in cauliflower,which provided important genetic resources and scientific basis for molecular breeding of disease resistance in cauliflower.

  • WANG Mengyuan, ZHANG Jianing, LI Hui, LI Peipei, HAN Yanlai, WU Mingyu
    Abstract (205) PDF (120) RichHTML (12)

    In order to explore a good fertilization model to improve the fertility of yellow-cinnamon soil in Southern Henan,the characteristics of stable and high yield of wheat-maize rotation system and its relationship with soil nutrients under different fertilization treatments on yellow-cinnamon soil were studied.Based on the long-term experiment since 2012,four treatments were set up:no fertilizer(CK),chemical fertilizer(NPK),chemical fertilizer combined with manure(NPKM)and chemical fertilizer combined with straw(NPKS).Plants and soil samples were collected at maturity stage to determine crop yield and soil organic carbon,alkaline nitrogen,available phosphorus and available potassium.The results showed that compared with CK treatment,the crop yield of each fertilization treatment was significantly increased,the yield of wheat was increased by 53.70%—64.50%,and the yield of maize was increased by 44.54%—58.31%.The yield of NPKM treatment was the highest(wheat 8 162.61 kg/ha,maize 8 836.33 kg/ha),and there was no significant difference between NPKS and NPKM treatments.The yield sustainability index(SYI)of NPKM treatment was the highest,and the SYI values of wheat season and maize season were 0.84 and 0.82,respectively.The crop yield and its SYI value both showed NPKM>NPKS>NPK>CK,indicating that chemical fertilizer combined with organic materials could significantly increase crop yield and its sustainability.At the same time,different fertilization treatments could improve soil nutrients to varying degrees,among which NPKM treatment had the most significant improvement effect.The relationship between crop yield and soil nutrients was analyzed.The relationship between crop yield and soil nutrients was analyzed.There was significantly positive correlation between crop yield and soil organic carbon(SOC),available nitrogen and available phosphorus contents,among which the correlation between crop yield and SOC was the most significant.With the increase of soil organic carbon content,the SYI value of crops increased first and then stabilized,and the inflection point was 15.15 g/kg.To sum up,the application of chemical fertilizer combined with manure can significantly increase crop yield and soil nutrients,and maintain high crop yield sustainability.It is a recommended fertilization model to achieve sustainable production of soil-crop system in yellow-cinnamon soil ecological zone.

  • SU Xiaomei, LYU Hongjun, LIU Shumei, LIANG Zengwen, CHEN Qian, HOU Lixia
    Abstract (202) PDF (121) RichHTML (6)

    In order to accelerate the breeding of pink-tomato varieties,a rapid breeding strategy was used to generate pink-fruited tomato material by CRISPR/Cas9-mediated gene editing of SlMYB12.Two adjacent target sites within the first exon of SlMYB12 were selected to construct the CRISPR/Cas9 binary vector, and then the vector was introduced into red-fruited inbred line R18-10C through Agrobacterium-mediated transformation. The homozygous mutants without exogenous Cas9 were screened using specific primers and their agronomic traits and fruit nutritional quality were analyzed. Sequencing results showed that three homozygous mutants of different mutation types were obtained and all of which were frame shift mutations caused by base deletion. Compared with wild-type red fruit tomatoes, SlMYB12-edited plants grew and developed normally,and there were no significant difference in plant height,single-fruit weight,total yield per plant,fruit total soluble solid content and lycopene level,but the mature fruit showed pink and the flavonoid naringenin chalcone(NarCh)content of tomato peels was significantly reduced in MYB12-edited plants.In summary,the procedure for the generation of pink-fruited tomato plants through CRISPR/Cas9-mediated targeted mutagenesis of SlMYB12 was set up and new pink-fruited tomato germplasms with stable inheritance were obtained.

  • WANG Zhaoyi, CUI Yuanyuan, HAN Mengqiao, LIU Zhengwen, DENG Xi, DOU Feifei, REN Yuzhao, LIU Caixia, LIU Fenglou, WANG Zhangjun, SUN Yangyang, REN Min, LI Qingfeng
    Abstract (186) PDF (143) RichHTML (23)

    Plant sodium-hydrogen antiporter(NHX,Na+/H+ antiporter)plays a crucial role in plant sodium and potassium ion balance and cellular pH regulation.In order to investigate the relationship between salt tolerance and ScNHXs,it was conducted to identify and analyze the ScNHXs by bioinformatics process,and to examine the expression pattern of ScNHXs under salt stress by RT-qPCR,which can provide the reference information for the investigation of the potential functions of ScNHXs as well as the mining of salt tolerance genes in rye.A total of 10 rye NHX gene family members(ScNHX1ScNHX10)were identified,and the phylogenetic tree analysis showed that they could be divided into two subfamilies,Vac and Endo,containing four and six genes,respectively.Physicochemical property analysis of the encoded proteins showed that most of the molecular weight ranged from 27.92 to 59.72 ku,the number of amino acids from 253 to 546 aa,and the isoelectric point between 5.17 and 8.81,with most of proteins being classified as acidic proteins.Signal peptide prediction indicated the absence of signal peptides in the members,and transmembrane structure analysis revealed that all members possessed transmembrane structures.The subcellular localization prediction indicated that ScNHXs were located in the plasma membrane and vesicles.Spatial structure prediction showed that their secondary structures mainly consisted of α-helices and irregular convolutions.Gene structure and motif analyses revealed that the number of exons of the ScNHXs varied from 13 to 24,and all of them possessed a conserved Na+/H+ exchange structural domain.In addition,cis-acting element analysis revealed that numerous elements related to hormone response and abiotic stresses were found in the promoter region of ScNHXs.Analysis of rye transcriptome data revealed significant differences in the expression patterns of ScNHXs in different tissues of rye.RT-qPCR analysis showed that ScNHXs responded differently to different concentrations of NaCl stress,and were able to persistently respond to salt stress over a long period of time.In summary,ScNHXs may be involved in the biological regulation during salt stress in rye.

  • QIN Lei, ZHANG Qiaoying, SUN Lei, SHI Haoying, TAN Haibin, SHI Xueping
    Abstract (182) PDF (82) RichHTML (10)

    Cucumber powdery mildew is one of the main diseases that adversely impacts cucumber production,posing a significant challenge to its sustainable cultivation.Identifying genes related to cucumber resistance to powdery mildew can help understand the genetic principles and molecular mechanisms of cucumber resistance to powdery mildew,and provide diverse gene resources for disease resistant breeding.This study constructed F1 and F2 populations of QK×QG using cucumber resistant inbred line QK and susceptible inbred line QG as parents.Using the extreme trait mixed pool resequencing (BSA-seq) method,the genomic regions harboring the resistance genes of cucumber powdery mildew were preliminarily located.By integrating transcriptome data with gene annotation information,the association interval of the disease phenotype was narrowed,sequence variations were identified,and key genes were screened.The results showed that the resistance of powdery mildew may be controlled by recessive genes,and the population of F2 showed a continuous normal distribution from resistant to susceptible.The BSA-seq analysis,combining the SNP-Index method and QTG(quantitative trait genomics)-seq method analysis highlighted the 19—21 Mb region of chromosome 5,where there were 77 annotated genes with SNP differences between samples,including 33 non-synonymous mutations.The transcriptome sequencing (RNA-seq) results showed that there were 309 upregulated genes and 697 downregulated genes in the susceptible material.The expression levels of 13 genes within the candidate segment of chromosome 5 showed significant differences after infection.Through a comprehensive analysis of differentially expressed genes and BSA,the candidate genes in this segment were narrowed to 3,and only SNP mutations were detected in the LOC101207011 gene.The candidate gene LOC101207011 was characterized by a mutation resulting in an amino acid change from Valine at position 656 to Leucine.This gene emerges as the primary focus of our investigation due to its potential role in conferring resistance to powdery mildew.

  • CHEN Huafeng, ZHANG Jianing, ZHANG Xiao, YUAN Yue, LIU Xiufeng, LIU Dan
    Abstract (171) PDF (126) RichHTML (21)

    To explore the function of key genes in photosynthesis, a functional knockout mutant (zmC4nadp-me) of ZmC4NADP-ME, the gene encoding the rate-limiting enzyme of the dark reaction of photosynthesis in maize, was obtained. Evolutionary tree analysis showed that ZmC4NADP-ME and its homologous genes exist in multiple copies in most plants, with diverse expression patterns. Phenotypic analysis revealed that the entire zmC4nadp-me plant was yellow-green, and its seedling-stage leaves dried up and died rapidly under light. Chlorophyll fluorescence analysis indicated that Y(Ⅱ) and electron transport rate ETR(Ⅱ) of photosystem Ⅱ (PSⅡ) in zmC4nadp-me decreased significantly, with little change in Y(NPQ), while the Y(NO) increased notably. Measurement of the absorption capacity (P700) of photosystem Ⅰ (PSⅠ) found that both the electron transport rate (ETR(Ⅰ)) and the actual photoelectron efficiency (Y(Ⅰ)) of zmC4nadp-me dropped substantially, and the gap widened with increasing light intensity. Under specific light intensities, Y(ND) and Y(NA) of zmC4nadp-me were greater than those of the wild type (WT). In conclusion, ZmC4NADP-ME is essential for plant growth and development. Disruption of this gene severely stresses PSⅡ, and the plant can't alleviate this stress by increasing Y(NPQ). Meanwhile, at low light intensities, the inhibition of PSⅠ may originate from the electron donor side of PSⅠ, and as the light intensity increases, the inhibition from the electron acceptor side of PSⅠ becomes a key factor.

  • SIBINUR Yashengjiang, ZHE Yuqi, ZHONG Jincheng, WU Zhijuan, CHAI Zhixin
    Abstract (170) PDF (91) RichHTML (5)

    Elongation of very long chain fatty acids protein 3(ELOVL3),mainly involved in the synthesis of very long chain fatty acids(VLCFA),plays an important role in fatty acid metabolism.The objectives of this study were to clone the protein-coding sequence of ELOVL3 gene from Jiulong yak,to construct the eukaryotic expression vector of ELOVL3 gene,and to predict and analyze its biological functions.The CDS region of the ELOVL3 gene was amplified by PCR and inserted into the pcDNA3.1 vector by homologous recombination to construct a recombinant plasmid.The recombinant plasmid was validated by restriction digest and PCR,and the biological functions of its protein coding sequence were analyzed by online prediction software in combination with sequencing results.In addition,qPCR and Western Blot were performed for the expression of ELOVL3 gene at mRNA level and protein level.The results showed that the protein-coding sequence of Jiulong yak ELOVL3 gene was 813 bp in length,encoding a total of 270 amino acids.Enzymatic cleavage,PCR and sequencing identification confirmed the successful construction of the pcDNA3.1-ELOVL3 eukaryotic expression vector.Bioinformatics analysis showed that the protein encoded by the ELOVL3 gene was a hydrophobic protein,with 6 transmembrane structural domains and 27 phosphorylation sites.The phylogenetic tree showed that the closest relation to the Jiulong yak was the common cow,and the furthest was the original chicken.In addition,the ELOVL3 gene was most highly expressed in the lung tissue of the Jiulong yak.

  • ZHANG Xiyu, SHEN Xing, LI Wei, LI Jie, YAN Linsen, ZHANG Feng, CHAI Zhongping
    Abstract (163) PDF (82) RichHTML (5)

    To investigate the effect of applying different gradients of nitrogen reduction on leaf production capacity of Korla fragrant pear,no fertilizer treatment(CK),no nitrogen fertilizer treatment(N0),conventional fertilizer treatment(N),and three nitrogen fertilizer reduction gradients(N1,N2 and N3,which reduced nitrogen use by 10%,20%and 30%,respectively,compared with conventional fertilizer)were set up in a total of six treatments.Leaf nutrient content,net photosynthetic rate,chlorophyll fluorescence,chlorophyll content,leaf area index and yield were compared under different fertilizer application methods based on multi-year fertilizer trials.Nitrogen fertilization significantly increased leaf and branch nutrient content,leaf chlorophyll content,leaf area index,net photosynthetic rate,chlorophyll fluorescence and yield,and soluble solids and VC content in fruit.Nitrogen reduction of 10% had no significant effect on leaf and branch nutrient content,chlorophyll fluorescence,net photosynthetic rate,chlorophyll content,leaf area index and fruit soluble solids,VC,stone cells and total acid content compared to complete N application,and N reduction of 10% to 20% had no significant effect on the orchard yield and was able to maintain it at the normal range level.Net photosynthetic rate,chlorophyll fluorescence parameters,and yield were significantly and positively correlated with N,P,K,Fe,Mn,Cu,and Zn contents in leaves and branches.According to the experimental results and analysis,the recommended range of nitrogen fertilizer reduction for Korla fragrant pear of 10—12 years old is 10%—20%(240—270 kg/ha)on the basis of fully applied nitrogen(300 kg/ha)as the optimal amount of nitrogen fertilizer reduction in fragrant pear orchards.

  • FU Panpan, HU Huihui, LI Jie, ZHAO Jin, WANG Pengfei, SHANG Xuefeng, ZHANG Sen, HUANG Xiaoyu
    Abstract (159) PDF (68) RichHTML (6)

    This study aimed to compare and analyze the milk composition,serum biochemical indices and expression levels of Leptin and LF genes during lactation between Bamei pigs and Yorkshire pigs.The six purebred Bamei pigs and Yorkshire pigs with healthy body conditions were selected respectively,which also had close parity,mating and delivery periods(within three days).A total of 50 mL milk,2 mL serum and 2 mL whole blood samples were collected from Bamei pigs and Yorkshire pigs on the 1st,7th,14th,21st and 28th day after delivery,respectively.Then,the milk,serum and whole blood samples were used to detect the milk compositions,serum indexes of alkaline phosphatase(ALP),albumin(ALB),globulin(GLB),triglyceride(TG),urea nitrogen(BUN),alanine aminotransferase(ALT)and aspartate aminotransferase(AST),and the expression levels of Leptin and LF genes.The results showed that on the 1st day of lactation in Baimei pigs,in addition to milk fat(Fat),the content of casein(CS),total protein(TP),total solid matter(TS),non-fat milk solids(SNF),lactose(L),free fatty acid(FFA)and acidity in the colostrum of Bamei pigs were all extremely significantly higher than those in the colostrum of Yorkshire pigs,while,the content of CS,TP,Fat,TS,SNF and L of Bamei pigs on the 21st day after delivery were extremely significantly lower than those of Yorkshire pigs.The serum biochemical indexes of two pig breeds showed different trends during the whole lactation.The content of ALT,AST,GLB,BUN and TG of Bamei pigs were significantly higher than those of Yorkshire pigs on the 1st day after delivery,while the content of ALP and ALB were all significantly lower than those of Yorkshire pigs.There were no different levels of these two genes on the 1st day,however,from the 7th day after delivery,the expression levels of LF in the Bamei pigs were significantly different than those in the Yorkshire pigs,while Leptin gene was extremely significantly expressed in Yorkshire pigs than in Bamei pigs.In general,the milk nutrients of Bamei and Yorkshire pigs showed a decreasing trend as the extension of the lactation periods,and the expression levels of Leptin and LF genes were likely related to the milk yield and quality between the two breeds,which may need to be further verified.

  • WANG Ziying, CHE Yanjing, BAI Xueyan, FENG Jingyi, ZHANG Weijian, HE Wanying, GU Siyu
    Abstract (155) PDF (110) RichHTML (3)

    In order to investigate the effects of conservation tillage techniques on soil nutrient and enzyme activity indicators,as well as ecological stoichiometry characteristics in black soil areas,this study used a 3-year positioning experiment method,with tillage (A-A) as the control,to investigate the changes in total nutrients soil organic carbon(SOC),total nitrogen (TN),total phosphorus(TP) and enzyme activities of β-D-glucosidase(βG),leucine aminopeptidase(LAP),N-1,4-acetylglucosidase(NAG),acid phosphatase(ACP)and their ecological stoichiometry characteristics in black soil under rotary tillage (B-B),conventional no tillage (C-C),and no tillage and straw mulching with original crop (0-0) treatments.The results showed that no tillage with straw mulching significantly increased soil SOC,TN,and TP content compared to tillage;except for C/N,the C/P and N/P ratios of straw mulching in no tillage with straw mulching were higher than those in tillage.The soil SOC and TN content of rotary tillage and conventional no tillage were relatively reduced compared to tillage,while the C/N,C/N,and N:P values all significantly increased in the second year.Compared with tillage,the activities of four enzymes were significantly increased under the no tillage and straw mulching treatment.In the third year,rotary tillage significantly increased ACP and βG by 22.05% and 50.00%,respectively,compared with tillage.Rotary tillage,conventional no tillage,and no tillage with straw mulching all significantly increased soil enzyme C/P.The vector angles of soil enzyme activity under the tested cultivation methods were all less than 45 degrees,indicating that soil microorganisms in the experimental area may be limited by N;the length of enzyme vector increased significantly with age,indicating an increased degree of restriction by C.The results of principal component analysis,grey relational analysis,and correlation analysis showed that no tillage with straw mulching had the most significant impact on soil nutrient content and enzyme activity.In summary,the no tillage and straw mulching with original crop technology measures have a good improvement effect on activating soil nutrients and enzyme activity,as well as maintaining soil ecological stability.

  • DONG Chenchen, LIU Zehui, CAO Aiwan, XU Xiaoyong, LEI Fengjin, LIU Qinghua
    Abstract (152) PDF (77) RichHTML (8)

    The naked seeds of zucchinii possess significant natural advantages in processing.To investigate the genetic mechanisms underlying the hull-less trait in zucchini,we utilized the hulled 17pu10 (P1) and the hull-less 17pu08 (P2) as parental strains,and constructed populations of F1 (P1×P2),F2,and BC1.The phenotypes of the zucchini seeds in the progeny population were assessed.The results showed that the number ratio of hulled seeds and hull-less seeds in the progeny population was in line with 3∶1 separation ratio.This indicated that the hull-less trait was regulated by a single gene and that the hull-less allele was recessive.Genetic mapping within this interval revealed that the gene for hull-less in zucchini was located between the markers InDel3157329 and InDel3724121,with genetic distances of 1.4,2.6 cM,respectively,while the physical distance was 0.6 Mb.The annotation and function analysis of 24 genes in the interval showed that 4 genes were directly or indirectly involved in the biosynthesis of cell wall,cellulose and lignin.Further analysis of the expression differences of 4 genes showed that only Cp4.1LG12g04350 and Cp4.1LG12g04370 had significant differences in expression levels during seed development.It was inferred that Cp4.1LG12g04350 or Cp4.1LG12g04370 was the candidate gene controlling the hull-less trait.In addition,InDel markers linked to hull-less genes were developed,which could be used as markers to identify zucchini hull-less traits,so as to accelerate the breeding of high-quality zucchini seed hull-less varieties.

  • YIN Dongdong, ZHU Xingxing, LAN Mengdie, PENG Mengling, YIN Lei, DAI Yin, SHEN Xuehuai, WANG Jieru, ZHAO Ruihong, PAN Xiaocheng
    Abstract (149) PDF (124) RichHTML (4)

    To analyze the variability of the novel Goose astrovirus(GAstV)in Lu'an,Anhui Province and to express the VP27-VP34 fusion protein,the gout samples were collected from a farm in Lu'an.After confirming positivity via RT-PCR,the virus was isolated by passage culture in goose embryos.Then,the isolated strain was subjected to an animal regression test,whole genome amplification sequencing and genetic evolution analysis.Subsequently,the VP27-VP34 fusion protein of the isolated strain was induced and expressed,and purified recombinant protein was used to immunize 6-week-old female BALB/c mice to produce polyclonal antibodies.Serum antibody titers were assessed using agar diffusion methods,and the specificity of the polyclonal antibodies was detected by indirect immunofluorescence(IFA).The specificity of the antibody was detected by indirect immunofluorescence(IFA),and the titer of the prepared antibody was detected by the agar diffusion method.The results showed that one strain of GAstV,named AH-2021 strain,was isolated from clinical samples.The animal regression test showed obvious urate deposition on the surface of the heart and liver of goslings,and the kidney was white and swollen.Genetic evolution results revealed that AH-2021 belonged to GAstV-1,showing 98.0%—99.0% identity with other GAstV-1 strains in GenBank.The recombinant expression vector pCold-TF-VP27-VP34 was induced by IPTG to obtain the target protein,and SDS-PAGE showed that the molecular weight of the recombinant protein was about 110 ku,which mainly existed in the form of supernatant.IFA results showed that the polyclonal antibody was able to specifically recognize the GAstV,and the agar diffusion results showed that the titer of polyclonal antibody was up to 1:16.In conclusion,a strain of novel GAstV AH-2021 was isolated from gouty goslings,and animal regression tests showed that the novel Goose astrovirus was the pathogen causing gout in goslings,and a polyclonal antibody to the VP27-VP34 fusion protein was prepared.

  • ZHANG Qinqin, HOU Guangguang, LI Chang, DAI Bowen, WANG Xiaofang, XIE Ziwei, FAN Mi, WU Xiaolei, GAO Hongbo, LI Jingrui
    Abstract (148) PDF (66) RichHTML (18)

    As one of the subfamily members of Ca2+-ATPase,ACA exerts a vital role in sustaining the intracellular Ca2+ concentration equilibrium and modulating plant growth and development in response to abiotic stress.To acquire an in-depth comprehension of the function of the lettuce ACA gene family,bioinformatics methodologies were utilized to identify and dissect the members of the lettuce ACA gene family.The outcomes manifested that 17 ACA genes were identified in lettuce,denominated as LsACA1 to LsACA17;the LsACA genes were unevenly distributed across 8 chromosomes;the subcellular localization prediction results disclosed that all LsACA proteins were localized in the plasma membrane;the number of introns exhibited significant variation(0—32)among the members of the LsACA gene family,a total of 15 conserved domains of LsACA proteins were identified,with amino acids ranging from 21 to 50;the proportion of the secondary structure was alpha helix>random coil>extended strand>beta turn;based on phylogenetic analysis,LsACA proteins were categorized into 5 subfamilies,namely Group Ⅰ to Group Ⅴ;according to collinearity analysis,it was found that there were fragment duplications in 6 pairs of genes,the Ka/Ks of their collinear gene pairs were all less than 1,signifying that purifying selection was the preponderant force in evolution.The expression patterns of LsACA gene family members under different calcium ion concentrations were analyzed by qRT-PCR.The results showed that:compared with the control,the expression levels of 12 LsACA genes in the calcium-sensitive variety Baoshilü under low calcium treatment were extremely significantly downregulated,while the expression levels of 9 LsACA genes in the calcium-insensitive variety Yeluo were extremely significantly upregulated and the expression level of 1 LsACA gene was significantly upregulated.The ACA gene family members of lettuce were identified and analyzed,and the characteristics of the LsACA gene family members were revealed.

  • LI Junren, CHEN Xiuzhen, WU Daidi
    Abstract (147) PDF (72) RichHTML (12)

    To reveal the sequence characteristics,subcellular localization,and expression pattern of PatASIL2,belonging to the Trihelix transcription factor family,the PatASIL2 gene was first cloned using the cDNA of Pogostemon cablin (patchouli)as a template,and the bioinformatics analysis was further performed.The PatASIL2-EGFP expressed vector was constructed and transformed into Arabidopsis protoplasm to investigate the subcellular localization of PatASIL2.The real-time quantitative reverse transcription PCR(qRT-PCR)was also performed to detect the expression profiles of PatASIL2 gene in different tissues of patchouli and under treatments of methyl jasmonate(MeJA),salt stress,drought stress,and cold stress.The results indicated that PatASIL2 gene contained an open reading frame of 1 035 bp and encoded 344 amino acids.The PatASIL2 protein was an unstable hydrophilic protein without transmembrane domains and signal peptides and had 41 serine phosphorylation sites and one Myb_DNA-bind_4 conserved domain.The phylogenetic analysis showed that PatASIL2 was classified into the SIP1 subfamily of Trihelix transcription factor family,and clustered closely with Sesamum indicum SiASIL2.The subcellular localization result indicated that PatASIL2 was a nuclear-localized protein.The qRT-PCR results indicated that PatASIL2 expressed in the young leaf,mature leaf,old leaf,stem,and root in patchouli,particularly with the highest expression in the old leaf.The PatASIL2 expression was significantly upregulated by MeJA at 12—24 h and salt stress at 3—24 h.The expression of PatASIL2 was significantly upregulated at 24 h after drought treatment,and at 12 h after cold treatment.

  • WANG Shujuan, LI Linna, WANG Xiaoli, ZHANG Liyan, GUO Jungang, WAN Wei, DUAN Liqing
    Abstract (146) PDF (90) RichHTML (17)

    In order to investigate the effect of exogenous 24-epibrassinolide(EBR)on the physiological characteristics of Lycium barbarum seedlings under salt stress,Ningxia L. barbarum Ningqi 7 was used as the experimental material.Five treatments were set up,namely 0 mmol/L NaCl+distilled water spray(CK),150 mmol/L NaCl+distilled water spray(N0 treatment),150 mmol/L NaCl+0.005 mg/L EBR(T1 treatment),150 mmol/L NaCl+0.050 mg/L EBR(T2 treatment),and 150 mmol/L NaCl+0.500 mg/L EBR(T3 treatment).The seedling plant height,basal diameter,aboveground and underground biomass,chlorophyll content,photosynthetic parameters,antioxidant enzyme activity and the content of osmoregulatory were measured on the 7th day,14th day,and 21st day respectively.The results showed that compared with N0 treatment,T1,T2,T3 treatments significantly increased the plant height,basal diameter,aboveground and underground biomass,photosynthetic pigments in leaves,net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), superoxide dismutase (SOD), peroxidase (POD), catalase(CAT)activities,as well as the content of osmoregulatory in L.barbarum seedlings,intercellular CO2 concentration (Ci) and malondialdehyde (MDA) content significantly decreased,T2 treatment had the best effect.On the 21st day of salt stress,compared to the N0 treatment,the plant height,basal diameter,aboveground and underground biomass of L.barbarum seedlings increased by 23.63%,15.45%,17.70%,and 47.06%,the content of Chlorophyll a,Chlorophyll b,and Chlorophyll a+b increased by 10.68%,12.31%,and 6.57%,respectively;Pn,Tr,and Gs increased by 55.53%,27.83%,and 9.76%,respectively;the Ci value decreased by 14.42%;the activities of SOD,POD,and CAT increased by 13.23%,20.10%,and 9.31%,respectively;the MDA content decreased by 35.28%;the proline content,soluble sugar content,and soluble protein content increased by 45.17%,86.54%,and 57.00%,respectively.In summary,an appropriate concentration of exogenous 24-epibrassinolide can promote the growth of L.barbarum seedlings under salt stress,improve the photosynthetic capacity and antioxidant enzyme activity of L.barbarum seedlings,increase the content of osmoregulatory substances,alleviate the damage of salt stress to L.barbarum seedlings,and enhance the salt tolerance of L.barbarum seedlings.Among them,exogenous 0.050 mg/L EBR has the best effect.

  • LIU Yongning, SHAN Yige, PAN Chenfan, LIU Qianlin, LI Yilin, DUAN Sizhang, AN Jian, ZHANG Jianjun
    Abstract (138) PDF (60) RichHTML (6)

    In order to investigate the immune protective effect of apical membrane antigen 1(AMA1)of Eimeria tenella on chickens infected with E.tenella, the AMA1 gene amplified was connected to expression vector pET-32a(+).The recombinant plasmid was transformed into E.coli BL21(DE3)to express recombinant protein.108 chickens were randomly divided into 6 groups with 3 replicates in each group and 6 chicks in each replicate,including non-immune and non-attacking group(negative control group),non-immune attack group(positive control group),Freund's adjuvant group and 12.5,25.0,50.0 μg rEtAMA1 immunized groups.All of the chickens were injected with different concentration of recombinant protein at the age of 14,21 days,and infected orally with 5×104 sporulated oocysts of E.tenella at the age of 28 days and killed at the age of 35 days.The immune protection effect of rEtAMA1 was evaluated by body weight gain,lesion score,oocyst production,immune organ index and levels of cytokines and antibodies.There was no significant difference in average weight gain among the groups.Compared with the positive group,the scores of cecal lesions in 25.0 μg and 50.0 μg rEtAMA1 groups were significantly reduced by 53%,41%,the OPG in 12.5,25.0,50.0 μg rEtAMA1 groups were significantly reduced by 16%,27%,54% respectively,the immune organ index of bursa of Fabricius in 50 μg rEtAMA1 groups significantly increased by 27%,the immune organ index of thymus in 25.0 μg and 50.0 μg rEtAMA1 groups significantly increased by 25%,22% respectively.There was no significant difference in the immune organ index of spleen.Seven days after the second immunization,the levels of IL-2 and IFN-γ in 12.5 μg and 25.0 μg rEtAMA1 groups were significantly higher than the negative control group.The level of serum total IgG concentration in the 50.0 μg rEtAMA1 group significantly increased by 47% than that in the negative control group,and the concentration after the second immunization was obviously higher than that after the first immunization.The results showed that the rEtAMA1 could alleviate cecal lesions,decrease the oocyst production,promote the development of immune organs and increase the levels of cytokines and antibodies in serum,which had a certain immune protective effect on chickens infected with E.tenella.

  • CHENG Litong, NAN Jinghong, LI Tianan, YAN Qiu, WANG Qi, ZHAO Xingxu, ZHANG Yong
    Abstract (127) PDF (63) RichHTML (3)

    The aim of this study was to explore the effects and regulatory roles of HSP60 on the testes and ovaries,uterus and fallopian tubes before and after ovulation in Bactrian camels at different developmental stages.The CDS region sequence of the HSP60 was cloned from the Bactrian camel testis and its bioinformatics analysis was analyzed using ProParam and MEGA 7.0 software,and its expression was explored by polymerase chain reaction(PCR),hematoxylin and eosin(H&E)staining,immunohistochemistry(IHC),Real-time Quantitative PCR(qPCR)and Western Blot.The cloning results showed that the coding sequence(CDS)region of the HSP60 was 1 722 bp in length and encoded 537 amino acids,and the HSP60 sequence of the Bactrian camel was similar to that of dromedary camel and alpaca.The qPCR results showed that HSP60 was expressed in the testes of Bactrian camels at different developmental stages,and the expression levels in the testes after sexual maturity(3,5 and 7 years old)were significantly higher than that at 3 months of age.The mRNA expression of HSP60 was found in the ovaries,uterus and fallopian tubes before and after ovulation,and the mRNA levels in the ovaries and uterus were significantly higher after ovulation than before ovulation,but there was no significant difference in the fallopian tube before and after ovulation.Western Blot results showed that the expression trends of HSP60 in the testes at different developmental stages were similar to that of mRNA,and the protein expression level increased with age.The protein levels of HSP60 in the ovaries,uterus and fallopian tubes were significantly higher after ovulation than before ovulation.Immunohistochemical staining revealed that the HSP60 protein was primarily located in Sertoli cells,Leydig cells,part of spermatogenic cells,granulosa cells of the ovaries,glandular cells of the endometrium and muscle cells.The results showed that HSP60 was involved in testicular development and spermatogenesis in Bactrian camels,as well as in the regulatory processes of ovulation induction and meiosis.

  • YANG Jianfeng, LI Tie, YANG Xu, WANG Yuesheng, SONG Xuefeng, SHAN Yulin, DANG Yuanyue, ZHANG Jian, ZHAO Jun
    Abstract (126) PDF (92) RichHTML (6)

    This study evaluates the efficacy of bio-organic fertilizer in managing Verticillium wilt in sunflowers,examining its effects on plant growth and disease resistance,and exploring its potential as a sustainable disease control strategy in sustainable agriculture.Pot experiment was conducted to investigate the effects of bio-organic fertilizer at different concentrations and under various treatment conditions on the sunflower Verticillium wilt pathogen and its impact on sunflower growth and disease resistance.The results indicated that the treatment significantly reduced the disease index of Verticillium wilt by 14.57% compared to the control group,with a relative control efficacy of 28.54% under indoor conditions.The application of bio-organic fertilizer significantly promoted sunflower growth and development.Specifically,when 1 g of bio-organic fertilizer was mixed with every 50 g of field soil,the sunflower emergence rate increased by 8.67 percentage point,and key physiological parameters,including seedling height,stem diameter,and fresh weight,were significantly enhanced.Further investigation revealed that bio-organic fertilizer fermentation filtrates at various concentrations effectively inhibited the growth of Verticillium dahliae colonies and spore germination,with inhibitory effects diminishing as dilution increased.Additionally,volatile compounds from the fertilizer significantly suppressed the formation of microsclerotia.In terms of disease resistance mechanisms,the bio-organic fertilizer fermentation filtrates enhanced plant resistance by inducing induced resistance.Physiological analysis showed that the filtrates triggered reactive oxygen species (H2O2)bursts,elevated the activities of superoxide dismutase (SOD) and peroxidase (POD),reduced malondialdehyde (MDA) accumulation,and increased the activity of phenylalanine ammonia-lyase (PAL),thereby significantly enhancing disease resistance in sunflowers.This study highlights the control potential of bio-organic fertilizer for managing sunflower Verticillium wilt and promoting plant health,providing theoretical and experimental support for optimizing fertilizer formulations and developing effective disease control strategies to enhance agricultural production.

  • FAN Puqing, ZHOU Houliang, SONG Shanshan, LIN Faming, SHI Yongchun, WANG Xiaoran, WANG Ran, ZHANG Xiaoquan
    Abstract (124) PDF (121) RichHTML (10)

    In order to reveal the expression patterns of PsbS protein in Nicotiana tabacum,the full-length NtPsbS gene sequence was cloned from cDNA of the tobacco cultivar K326,and the multiple protein sequences of NtPsbS gene and PsbS genes of seven crops including rice,tomato and soybean were compared by DNAMAN software.The phylogenetic analysis was carried out by MEGA 11 software,and the phylogenetic tree was established by neighbor-joining method.Tissue expression of NtPsbS gene in tobacco at different growth stages was detected by qRT-PCR.The plant expression vector pS1300-PsbS-GFP was constructed to find subcellular localization of the NtPsbS mature protein.Finally,the mRNA levels of NtPsbS under abiotic stresses were analyzed in K326.The results showed that the total length of tobacco NtPsbS gene was 825 bp,encoding 274 amino acids.The homology of tobacco NtPsbS protein and tomato SlPsbS protein was the highest up to 91%.The NtPsbS gene exhibited the highest mRNA levels in the leaves among the tissues,including leaves,roots,stems,seeds and other parts of K326.The mature NtPsbS protein was located in chloroplasts.For the abiotic stress,it was found that the expression level of NtPsbS was significantly increased under salt stress,cold stress and Abscisic acid(ABA)treatments.In summary,the expression level of NtPsbS was the highest in tobacco leaves at different growth stages,and it was higher when under the treatments of salt stress,cold stress and ABA,indicating that this gene may be involved in the salt and cold stress resistance and ABA metabolic pathway in tobacco,which could provide basis and reference for the functional analysis of the NtPsbS gene in future.

  • ZHANG Hongmei, YANG Haipeng, LIU Yajuan, LONG Yun, ZHANG Peng'an, CHEN Wei, ZHANG Jie, HOU Lingpeng, HAN Zhiling, LIU Xiaohong
    Abstract (123) PDF (61) RichHTML (16)

    STAT proteins are a class of transcription factors that play crucial roles in signal transduction and gene transcriptional activation.In plants,the expression of STAT genes are associated with abiotic stresses such as high temperature.To investigate whether maize STAT genes are involved in the response to high-temperature stress,two maize inbred lines,Zheng 58(tolerant to high-temperature stress)and PH6WC(sensitive to high temperature),were selected as materials.The plant tissues from five parts(root,stem,leaf,pollen,and filament)of plants grown under high-temperature and normal-temperature conditions were used for transcriptome sequencing.Based on the sequencing data,the structure of STAT genes,the physicochemical properties of the proteins encoded by STAT genes,and tissue-specific expression patterns of STAT genes under different temperatures and materials were analyzed.The results showed that two STAT genes were identified in maize,named Zm-STAT1 and Zm-STAT2.The protein encoded by Zm-STAT1 was hydrophobic,while that encoded by Zm-STAT2 was hydrophilic,both containing multiple functional and phosphorylation modification sites.Further expression analysis revealed that, with room temperature as the control, under high-temperature conditions, Zm-STAT1 gene was upregulated in the root of PH6WC and in the pollen and filament of Zheng 58, whereas Zm-STAT1 gene in the stem and leaf of PH6WC and Zm-STAT2 gene in the leaf of PH6WC were down-regulated expression. Under both temperature conditions,the expression level of Zm-STAT2 was significantly higher than that of Zm-STAT1 across all five tissues.Notably,Zm-STAT2 was induced by high temperature in root,stem,pollen,and filament in the heat-tolerant Zheng 58,suggesting that Zm-STAT2 gene was involved in high-temperature stress response.

  • YANG Keming, LI Haifeng, Huxidan Maimaiti, Rexidan Amuti, LIU Guohong, LIU Zhigang
    Abstract (121) PDF (66) RichHTML (10)

    To improve the growth,yield,and quality of cantaloupe under extreme high temperature weather in Turpan,Xinjiang,the effects of spraying prohexadione-calcium(PCa)on the physiological growth of cantaloupe under high temperature stress were investigated,distilled water(CK)and PCa with concentrations of 20(PCa1),50(PCa2),100(PCa3),150 mg/L(PCa4)were sprayed on cantaloupe leaves.Through comprehensive analysis of indicators such as photosynthesis,reactive oxygen species content,antioxidant enzymes,antioxidant substances,vine length,stem thickness,yield,and quality of cantaloupe under high temperature stress,the optimal concentration of PCa suitable for foliar spraying of cantaloupe in the region was found.The results showed that as the concentration of PCa increased,the chlorophyll a,chlorophyll b, $\mathrm{O}_{2}^{-}$,H2O2,and stem diameter of cantaloupe gradually increased at different stages,with increases of 9.25%-36.29%,4.25%-49.92%,21.45%-334.55%,5.36%-109.41%,and 2.33%-20.69% compared to CK,respectively;and MDA gradually decreased,with a decrease of 7.37%-48.83% compared to CK,respectively.Spraying PCa increased photosynthesis and reactive oxygen species in cantaloupe under high temperature stress,reducing the damage of high temperature to cantaloupe biofilm.PCa1,PCa2,and PCa3 treatments increased the levels of soluble protein,soluble sugar,PRO,SOD,POD,AsA,GSH,yield,soluble solids content,and soluble sugar content of the fruit in cantaloupe under high temperature stress compared to CK.Among the three treatments,PCa2 treatment showed better performance in terms of various indicators.Spraying PCa at an appropriate concentration significantly improved the osmotic regulation substances,antioxidant enzymes,antioxidant substances,and yield and quality of cantaloupe under high temperature stress,enhanced its heat resistance,and achieved increased yield and quality of cantaloupe.Although PCa4 treatment increased the yield of cantaloupe,it reduced the content of soluble solids and soluble sugars in the fruit.High concentrations of PCa delayed the growth of cantaloupe and affected its quality at harvest.Therefore,PCa2 treatment in production is the best treatment to achieve heat resistance,yield increase,and quality improvement of cantaloupe under high temperature stress.It is recommended that the optimal concentration for spraying PCa in this area is 50 mg/L.

  • JIANG Hao, ZHANG Linjie, CAI Jiaru, WANG Xueqing, LU Jie, ZHOU Yi, ZHU Yulei, WANG Shengxing
    Abstract (119) PDF (54) RichHTML (12)

    To explore the potential biological functions of HBD family members in the important cereal crop wheat,it first conducted a bioinformatic analysis of the HBD family members and their sequence characteristics in common hexaploid wheat.Subsequently,transcriptome and Real-time Quantitative PCR(qRT-PCR)analyses were performed to assess their expression patterns and functions.The results identified a total of 90 wheat HBD genes,which contained between 2 and 18 exons and comprised 111 to 1 863 amino acids;they could be divided into six subgroups based on their evolutionary relationships.The tissue expression pattern results showed that most HBD genes were relatively highly expressed in the roots,stems,spikes,and grains of the plants,while their expression in leaves was relatively low,reflecting the diversity of their biological functions.The promoter regions of these HBD members contain 62 types of cis-acting elements,mainly involved in light and hormone regulatory elements that participated in stress responses.Different members of the HBD gene family responded to various abiotic stresses,including phosphorus,salinity,low temperature,high temperature,drought,and heat-drought synergistic stress.Among these,TaHBD23,TaHBD28,TaHBD67,TaHBD78,and TaHBD85 showed significant differential expression under various stresses,serving as important candidate genes for stress response.In response to biotic stress,the number of HBD family genes responding to Fusarium pseudograminearum and Pseudomonas translucens was fewer than those responding to F.graminearum, suggesting their critical role in the response to F. graminearum resistance.Further research on the transcriptome data from wheat Bobwhite materials infected with F.graminearum and treated with water identified 41 HBD genes with significantly changed expression levels.Among them,10 genes overlapped with the database,and quantitative analysis was consistent with the trends in transcriptome data,indicating that TaHBD28/17,TaHBD67,and TaHBD90/84 negatively responded to Fusarium head blight,while TaHBD39/37,TaHBD45,and TaHBD68/79 positively responded to Fusarium head blight.

  • WANG Ying, LIU Ruliang, WANG Fang, HONG Yu, MAO Xinping
    Abstract (117) PDF (166) RichHTML (16)

    In order to study the effects of different nitrogen application rates on rice yield,nitrogen uptake and soil fertility,the effects of different nitrogen application levels on rice yield,nitrogen use efficiency and soil tillage fertility in the Yellow River Irrigation Area were studied from 2021 to 2023 using rice variety Fuyuan 4 as the test material.Compared with other treatments,the average yield of 360 kg/ha was 9.4 t/ha,which was 182.94% higher than that of no nitrogen treatment,and 40.72% and 26.34% higher than that of 210,240 kg/ha.From the perspective of yield components,the increase in yield was mainly due to the increase of grain number per spike and the number of effective spikes,and excessive nitrogen application would cause the decrease of 1000-grain weight.The average of the 3-year results showed that the nitrogen use efficiency was up to 26.93% with 240 kg/ha of nitrogen,and the partial productivity of nitrogen fertilizer decreased with the increase of nitrogen application rate.The highest average value of organic matter was 18.60 g/kg after nitrogen application of 210 kg/ha.Compared with the non-nitrogen application treatment,the soil total nitrogen content of each nitrogen application treatment increased by 7.61%—15.67%,and the soil total nitrogen content of the 360 kg/ha nitrogen application treatment decreased with the increase of the experimental year.The total phosphorus content of soil was gradually reduced in the 360 kg/ha nitrogen application treatment,and the total phosphorus content in other nitrogen application treatments was maintained at about 0.85 g/kg.The total potassium content of nitrogen fertilization treatments gradually decreased with the increase of nitrogen application rate,and the total potassium content of the 360 kg/ha nitrogen application treatment decreased by 23.74%,22.16% and 8.85%,respectively,compared with the nitrogen fertilization treatments of 120,210 and 240 kg/ha.Soil available phosphorus increased with the years of the experiment,and the variation range between treatments increased with time.With the increase of nitrogen application rate,soil available phosphorus increased first and then decreased,and the soil available phosphorus of the 240 kg/ha treatment increased significantly in 2023 compared with other treatments.The soil available potassium of each treatment did not change significantly with the test years.By considering crop yield,nitrogen use efficiency and soil fertility,nitrogen application of 240 kg/ha could balance the environment and production requirements.

  • GUO Na, LI Ruonan, BAI Wei, MA Jianfu, LI Airong, QIAO Haiming, LIU Dong, GUO Yingjie, LI Feng
    Abstract (115) PDF (83) RichHTML (27)

    To explore the impact of organic fertilizer on the physiological growth of flax and the rhizosphere bacterial communities,and to investigate green high-yield cultivation techniques for flax in dryland,a field experiment was conducted using Baxuan No.3 as the material.The study examined the effects of four different fertilization treatments(T0:no application; T1:low quantity of cow manure; T2:medium cow manure; T3:high quantity of cow manure)on the physiological growth changes,nitrogen utilization,dry matter accumulation,and the diversity,community composition,co-occurrence networks,and metabolic pathways of the rhizosphere bacteria of flax,as well as discussing the environmental factors driving the differences in bacterial communities.The results showed that the T3 treatment resulted in higher flax production. Compared to the control, this fertilization condition also had the highest indicators for plant height, capsule fruit number per plant, thousand-grain weight, and nitrogen use efficiency, which form the physiological basis for stable yield following the application of organic fertilizer.The application of organic fertilizer significantly affected the diversity and richness of the rhizosphere soil bacteria of flax,and there were significant differences in the structure of the rhizosphere bacterial community.The population structure of the rhizosphere bacteria of flax was influenced by organic matter,total nitrogen,and available phosphorus.The dominant flora in the rhizosphere of flax was the same across different treatments,but the relative abundance of each dominant flora varied significantly.The rhizosphere of flax was dominated by the phyla Proteobacteria,Actinobacteria,Acidobacteria,Chloroflexi,and Bacteroidetes.The relative abundance of Proteobacteria and Actinobacteria increased with the increase of organic fertilizer treatments,while that of Acidobacteria decreased with the increase of organic fertilizer treatments.WGCNA analysis identified 15 co-expression modules,with the Red and Pink modules showing a significant positive correlation with organic matter content.The application of organic fertilizer increased the complexity of the bacterial network,and seven key OTUs were identified through combined WGCNA analysis.In conclusion,the application of organic fertilizer promoted the growth of flax and altered the structure and network complexity of the bacterial community in the rhizosphere soil of flax.

  • AN Jianghong, WANG Liwei, SIQIN Bateer, SUN Hua, ZHAO Mengran, SUN Tianhao, HE Jiangfeng, ZHAO Jie
    Abstract (111) PDF (58) RichHTML (16)

    Chalcone synthase(CHS)is the initial and crucial enzyme in the flavonoid biosynthesis pathway,responsible for the synthesizing of metabolites such as flavones,flavonols,isoflavones,and anthocyanins,which play a vital role in enhancing plant stress resistance.In order to explore the role of CHS genes in the drought stress response of oat seedlings,it identified a CHS gene from the full-length transcriptome data of oats,named AsCHS.Gene cloning,bioinformatics analysis,subcellular localization,and expression pattern analysis were conducted.The results showed that the AsCHS gene encoded a protein composed of 398 amino acids and had a CHS family-specific tag sequence.This protein was hydrophobic and unstable.It was a non-transmembrane protein and was located in the nucleus and cytoplasm.Secondary structure prediction showed that AsCHS was mainly composed of α-helices and random coils.The analysis of the cis-acting elements within the promoter region revealed that the gene contained cis-elements associated with drought stress response and multiple hormone signaling pathways.Phylogenetic tree analysis showed that AsCHS was closely related to its counterparts in Lolium perenne,Poa annua,and Deschampsia antarctica.Subcellular localization indicated that the AsCHS protein was localized in the nucleus and cytoplasm.Compared with the control group,the expression pattern of AsCHS in oat seedlings under drought stress changed from fluctuating expression to incremental expression with different germination time,shifting from the highest expression level in roots to the highest in leaves,with significant differences observed in leaves expression.It laid a foundation for elucidating the function of AsCHS in the drought stress response of oats.

  • WANG Zheng, SHANG Yuanyi, WANG Mengyu, ZHANG Qian, ZHANG Limei, ZHANG Shuiqing, HAN Yanlai, LI Peipei
    Abstract (107) PDF (80) RichHTML (9)

    The effects of different nitrogen reduction and efficiency enhancement measures on ammonia volatilization and crop yield in fluvo-aquic soil of wheat-maize rotation system were studied to provide guidance for rational fertilization and agricultural environmental protection.A long-term nitrogen reduction was carried out since 2016 at the experimental station of Xuchang fluvo-aquic soil area in Henan Province.No nitrogen fertilizer control(CK),conventional nitrogen fertilizer(100N),20% nitrogen reduction(80N),and 20% nitrogen reduction combined with straw returning(80NS),nitrification inhibitor(80NI),and biochar(80NB)were set up.The soil physical and chemical properties,annual ammonia volatilization characteristics and wheat and maize yield of different treatments were studied from 2021 to 2022.In the wheat season,the pH value of 80NS,80NI and 80NB treatments was significantly higher than that of 100N treatment.The organic matter content significantly increased, while the soil bulk density significantly decreased in the 80NS and 80NB treatments, compared with the 80N and CK treatments, respectively. At the base fertilizer stage of wheat,the ammonia volatilization accumulation of 80NS,80NI and 80NB treatments was significantly lower than that of 100N by 28.71%,35.61% and 22.99%,respectively.During the topdressing stage of wheat season,the ammonia volatilization accumulation of 80NS and 80NB treatments was significantly lower than that of 100N by 14.94% and 17.58%,respectively.The ammonia volatilization accumulation of 80NS and 80NI treatments was significantly increased by 22.27% and 27.69% compared with 80N.During the whole growth period of wheat,the accumulation of ammonia volatilization in different nitrogen treatments accounted for 1.31%-2.47% of the nitrogen application rate,showing 100N> 80NB> 80NS> 80NI> 80N.In the maize season,compared with the accumulation of ammonia volatilization under 100N treatment,80N and 80NS treatments significantly decreased by 37.14% and 29.63%,respectively,and 80NI treatment significantly increased by 60.83%.Compared with 80N treatment,the accumulation of ammonia volatilization in 80NI and 80NB treatments increased significantly by 155.79% and 44.05%.The accumulation of ammonia volatilization in maize growth period accounted for 5.81%-14.86% of nitrogen application rate,showing 80NI> 100N> 80NB> 80NS> 80N.The wheat yield results indicated that compared with 100N treatment,80N treatment significantly reduced the yield by 16.67%,while 80NS,80NI and 80NB treatments did not significantly reduce the yield.Maize yield data showed that there was no significant difference between 100N treatment and four nitrogen reduction treatments.In summary,the application of nitrification inhibitors,straw and biochar on the basis of reducing nitrogen by 20% in the experimental fluvo-aquic soil can effectively improve soil fertility and stabilize crop yield.However,nitrification inhibitors and biochar significantly increase the accumulation of ammonia volatilization in maize season,which needs special attention in actual production.

  • WANG Benlong, ZHOU Chunsheng, LI Lirong, HAI Zhen, LOU Yuxin, LIU Xueyao, LIU Ping
    Abstract (102) PDF (152) RichHTML (13)

    To address issues such as shallow soil layers,upward movement of the plowpan,and soil salinization in the saline-alkali soils of the West Liaohe Plain,field trials were conducted in Huatugula Town,Horqin Zouyi Middle Banner,Tongliao City,Inner Mongolia Autonomous Region,from 2020 to 2021.Two tillage methods(traditional rotary tillage and powder ridge plowing),two irrigation quotas(2 100,2 700 m3/ha),and mulching and shallow burial measures were set up,resulting in six experimental treatments:2 100 m3/ha irrigation quota+traditional rotary tillage+shallow burial(CK×NM),2 100 m3/ha irrigation quota+traditional rotary tillage+mulching(CK×DM),2 100 m3/ha irrigation quota+powder ridge plowing+shallow burial(FA×NM),2 100 m3/ha irrigation quota+powder ridge plowing+mulching(FA×DM),2 700 m3/ha irrigation quota+powder ridge plowing+shallow burial(FB×NM),2 700 m3/ha irrigation quota+powder ridge plowing+mulching(FB×DM).The effects of powder ridge plowing and mulching treatments on soil properties,structure,saline and alkaline content,and maize yield in the 0—40 cm soil layer under different irrigation quotas were analyzed. The result showed that compared to the CK×NM treatment, in the 0—40 cm soil layer, the soil bulk density decreased by 8.4%—22.9%, the total soil porosity increased by 4.9—14.8 percentage points, and the soil three-phase ratio R value decreased by 34.6%—88.2% under powder ridge plowing + mulching treatment,among them, the bulk density, total porosity, and three-phase ratio R value of the soil treated with FB×DM treatment were significantly reduced by 20.0%,-13.1 percentage points, and 88.2%, respectively;soil moisture content after sowing increased by 5.5—12.1 percentage points in the 20—40 cm soil layer, soil hardness increased by 33.4%—397.5% in the 7.5—17.5 cm soil layer,among them, the soil moisture content, hardness of the FB×DM treatment increased significantly by 12.1 percentage points, 214.3%,respectively;CO2 flux of the FB×DM treatment increased significantly by 496.4%.Compared to the CK×NM treatment, the powder ridge plowing+mulching treatment reduced the soil pH value, total alkalinity, electrical conductivity, and total salt content in the 0—40 cm soil layer, with reduction rates of 0.7%—10.9%, 2.5%—67.5%, 24.3%—68.7%, and 10.3%—81.0%, respectively. Among them, the soil pH value, total alkalinity, electrical conductivity, and total salt content of the FB×DM-treated soil were significantly reduced by 10.9%, 48.2%, 59.2%, and 80.0%, respectively.Maize germination rate, ear fresh weight, and yield were increased by 13.2—20.1 percentage points,52.5%—68.2%, and 22.4%—45.5%, respectively,among them, the germination rate, ear fresh weight, and yield of the FB×DM treatment were significantly increased by 20.1 percentage points,68.2%, and 45.5%, respectively, compared to the CK×NM treatment. Considering the comprehensive improvement effects and maize yield, it is concluded that the 2 700 m3/ha irrigation quota+powder ridge plowing+mulching(FB×DM) is a more suitable cultivation mode for saline and alkaline land in the West Liaohe Plain.

  • GAO Fang, HOU Zhanming
    Abstract (101) PDF (63) RichHTML (7)

    The aim was to study the biological function of FolSid1 gene in Fusarium oxysporum f.sp.lini and its protein localization in Fusarium by cloning the gene.The gene sequence of FolSid1 was cloned by homologous comparison with F.oxysporum, and based on the principle of homologous recombination, a gene deletion box containing hydromycin resistance gene(hph)was constructed by Split Marker strategy,and the gene deletion mutant(ΔFolSid1)was obtained by PEG-mediated transfer into protoplasts of the wild type.pZESH1,a green fluorescent expression vector containing FolSid1 gene was constructed,and the subcellular localization of FolSid1-EGFP fusion protein was performed.The results showed that the sequence of FolSid1 gene consisted of 5 392 bp,which contained 3 introns.Compared with the wild type and the external insertion mutant, the knockout mutant ΔFolSid1 conidia showed a significant decrease in yield, although they did not differ in morphology and size; morphological observations revealed that the growth rate of colonies from the knockout mutant was significantly slower. The experiments of subcellular localization showed that FolSid1 protein was located in the cell membrane of mycelia cell.FolSid1 gene regulated the vegetative growth of mycelium,conidiogenesis and pathogenicity of Fusarium oxysporum f.sp.lini.

  • QIAO Jun, LIU Jing, LI Suwen, WANG Liying
    Abstract (100) PDF (67) RichHTML (6)

    To systematically study genes related to fruit hardness,genome resequencing BSA method was used to locate the fruit hardness association interval,and predict candidate genes based on their corresponding reference genome collinearity segments and gene annotation information,to lay the foundation for the next step of gene localization and cloning.The fruit hardness separation of F2 offspring from stable genetic soft flesh inbred line C18 and hard flesh inbred line LE4 crosses followed a normal distribution.30 soft fleshed and 30 hard fleshed individual plants were selected from the F2 population to construct extreme mixed pools,and whole genome resequencing with 30×and 10×coverage on the mixed pools and parents was conducted.A total of 1 891 040 single nucleotide polymorphisms(SNPs)and 376 603 insertion deletion markers(InDels)were obtained from the hybrid pools and parents,which were used for genome-wide mapping of fruit hardness traits.The peak of BSA localization was distributed within a total of 2.71 Mb between 72 610 411 and 75 329 951 bp on eggplant chromosome 6.Based on pathway enrichment and gene function annotation,candidate genes Smechr0601726.1 and Smechr0601735.1 were obtained.In summary,through genome resequencing BSA analysis,eggplant fruit hardness may be regulated by two important candidate genes.Smechr0601726.1 encodes a polygalacturonase gene,which is directly related to fruit hardness;Smechr0601735.1 is closely related to the metabolism of ascorbic acid and arabic acid,encoding ascorbate peroxidase,and is associated with fruit development and hardness formation,which can delay fruit softening.

  • LI Linlin, LIU Akang, WANG Yanping, LIU Xiaoyan, NAN Zhenwu, ZHAO Shuai, CHEN Guangzhou, GUO Tao, ZHANG Bin, ZHAO Kainan, LI Shengdong
    Abstract (100) PDF (69) RichHTML (5)

    The effects of tillage depth and organic fertilizer rates on photosynthetic characteristics,yield formation,and economic benefits of wheat were explored to provide a theoretical and technical basis for fluvo-aquic soil or similar soil types.The two-factor split-plot field experiment was conducted in the typical fluvo-aquic soil area of Qihe County,Dezhou City,Shandong Province from 2022 to 2024,where the tillage depth 15-20 cm(D1)and tillage depth 30-35 cm(D2)were assigned to the main plots,and the organic fertilizer rates of 800(L),1 200(M),and 1 600 kg/ha(H)were assigned to the subplots.The photosynthetic characteristics,aboveground dry matter accumulation characteristics and yield composition,in wheat were tested in fluvo-aquic soil under different tillage depths and organic fertilizer rates.Both D2M and D2H treatments were beneficial to improve the yield and yield components of wheat,and the spike number,kernels per spike,1000-grain weight,and grain yield significantly increased by 5.5%-8.5%,3.5%-12.1%,6.7%-13.2% and 6.6%-12.8%,compared with other treatments,respectively.D2M and D2H treatments also stabilized or increased the above-ground dry matter accumulation at jointing,anthesis,and maturity stages by improving the above-ground dry matter accumulation rate at each growth stage,which was 9.0%-22.1%,8.9%-25.8% and 10.7%-24.3% higher than averaged across the two years of other treatments,respectively.Compared with D1,D2 was more conducive to promoting the effect of organic fertilizer on the SPAD of leaves at different growth stages.Under D2M and D2H treatments,higher chlorophyll content could be maintained from the mid- to late-filling stages.Under M and H organic fertilizer application rates,the Pn of leaves at different growth stages of D2 was significantly higher than that of D1.At jointing,booting,flowering,mid-filling,and late-filling stages,on average over the two years,D2M and D2H increased significantly by 12.0% to 16.7%,13.7% to 16.8%,13.8% to 19.7%,20.2% to 25.8%,and 24.6% to 44.8%,respectively,compared with D1M and D1H.Under the same organic fertilizer application rates,the difference in leaf LAI between the two tillage depths gradually increased with the progression of the growth process.D2M and D2H performed best at anthesis and mid-filling stages,increasing by 13.2% to 27.2%,and 13.4% to 29.4%,respectively,compared with other treatments on average over the two years.In conclusion,both D2M and D2H treatments could enhance the photosynthetic characteristics of plants and the above-ground dry matter accumulation ability,thereby optimizing the yield components and achieving the drastically improvement of wheat yield.However,there were no significant differences in the indices between D2M and D2H treatments.Therefore,considering resource conservation,this study suggests that the combination of a tillage depth of 30-35 cm and an organic fertilizer application rate of 1 200 kg/ha can achieve wheat high yielding.

  • HU Yuying, SUN Mao, WANG Qian, LI Zhibin, BAO Rui, GUI Min, ZHONG Qiuyue, DU Guanghui, WU Liyan
    Abstract (98) PDF (82) RichHTML (11)

    In order to explore the role of NBS-LRR gene RPM1 in the resistance to Verticillium wilt in Solanum,it took the wild Solanum sisymbriifolium Lam.as material,and cloned the homologous sequence of RPM1 gene on the basis of its transcriptional sequencing.The physicochemical properties and molecular structure of the sequence encoded protein were analyzed,the evolutionary relationship tree was constructed,and subcellular localization was performed in tobacco.At the same time,the relative expression level of RPM1 gene in different parts of Solanum sisymbriifolium Lam.was detected,as well as the relative expression level at for time points(0,24,48 and 72 h)after inoculation with Verticillium dahliae(a pathogen of Verticillium wilt).The results showed that the total length of RPM1 gene(SsRPM1)was 2 772 bp,encoding 924 amino acids.SsRPM1 protein,with a total molecular weight of 105.99 ku,was an alkaline hydrophilic protein without transmembrane structure.SsRPM1 protein was mainly composed of α helix and random coil,including LRR,NBC and CC domains.Solanum dulcamara RPM1 protein had the closest relationship with it.Subcellular localization in tobacco found that the protein was located on the cell membrane.SsRPM1 gene was expressed in different organs(root,stem and leaf),among which the stem had the highest relative expression,followed by leaf and root.After inoculation with V.dahliae,in general,SsRPM1 gene expression in both control group and inoculation group showed a trend of first increasing and then decreasing.The relative expression level of SsRPM1 gene was the highest at 24 h after inoculation.Compared with the control group,the relative expression level of SsRPM1 gene in inoculation treatment was lower.It is suggested that SsRPM1 is a negative regulatory gene in response to Verticillium wilt stress.

  • HONG Yu, CHEN Shuotong, GAO Fang, YAN Peng, QI Xueyuan, MI Wenhai
    Abstract (97) PDF (75) RichHTML (4)

    To investigate the effects of different dosages of biochemical fulvic acid (BFA) on the improvement of soda saline-alkali soil and the response mechanism of maize growth,a pot experiment was conducted using soda saline-alkali soil from Inner Mongolia as the test soil and maize Dongdan 181 as the test variety.Four BFA application rates were set as 0(CK),2(FA2),4(FA4),8 g/kg(FA8).Soil nutrients,microbial diversity,maize salt tolerance,biomass,and other indicators were measured.The results showed that compared to the CK,soil pH decreased with increasing BFA dosage.The soil available phosphorus content increased significantly after the application of BFA,but there was no significant difference among the three treatments of FA2,FA4 and FA8 at 30,62 and 80 days after sowing.Soil salinity increased with the increase of BFA dosage,with an increase of 23.30%—89.32%.Soil exchangeable potassium content increased with increasing BFA dosage,while exchangeable calcium content gradually decreased.The proportion of <0.053 mm silt and clay fractions in the soil decreased by 6.49,9.92 and 13.97 percentage points under FA2,FA4,and FA8 treatments,respectively,compared to the CK treatment.Meanwhile,the proportion of 0.053—0.250 mm aggregates increased by 5.90,8.99 and 13.75 percentage points,the proportion of 0.250—2.000 mm aggregates increased by 0.55,0.87 and 0.21 percentage points,while the proportion of >2.000 mm aggregates increased by 0.04,0.06 and 0.01 percentage points,respectively,under the FA2,FA4,and FA8 treatments relative to the CK.Soil microbial diversity was significantly higher than that of CK after the application of BFA,but the FA8 treatment was lower than the FA4 treatment.The Na+/K+ ratio in both shoots and roots of maize was lower under FA2 and FA4 treatments than under the CK treatment,while the FA8 treatment increased the Na+/K+ ratio in the shoots.Maize biomass significantly increased in the mid-to-late growth stages under FA2 and FA4 treatments,while biomass significantly decreased under the FA8 treatment.In summary,the application of 2 g/kg or 4 g/kg of biochemical fulvic acid can positively reduce the alkalinity of soda saline-alkali soil,increase the content of available phosphorus in the soil,improve soil structure,improve soil microbial diversity,and enhance maize salt tolerance and biomass.However,exceeding this dosage range will significantly increase soil salinity and inhibit maize growth.

  • WANG Liqi, ZHANG Lei, LI Xi, GUAN Sheng, LU Jianning, XU Mingzhi, CUI Guoxian, SHE Wei
    Abstract (94) PDF (71) RichHTML (6)

    To investigate the role of the BnMLP2 gene in drought tolerance in ramie,the BnMLP2 gene encoding a metallothionein-like protein in ramie was obtained by analyzing ramie transcriptome data using Zhongzhu-1 as the material.The BnMLP2 gene was screened and cloned from the ramie transcriptome data,and bioinformatics analyses were conducted,including sequence alignment,domain prediction,and subcellular localization prediction.Fluorescent Quantitative PCR was used to determine the expression profile of the BnMLP2 gene in different tissues of ramie and to explore its expression changes under drought stress.The BnMLP2 gene was introduced into Arabidopsis thaliana to construct transgenic plants.Under drought stress conditions,phenotypic,physiological,and biochemical differences between transgenic and wild-type Arabidopsis were compared,along with the expression of stress-related genes.The results showed that the open reading frame of the BnMLP2 gene in ramie was 243 bp in length,encoding 80 amino acids.BnMLP2 had the closest amino acid sequence homology to metallothionein(MT)or metallothionein-like protein (MLP) from Malus domestica,both belonging to the metallothionein family; it contained the PFAM01439 domain and belonged to class Ⅱ metallothionein,with a predicted subcellular localization in the cytoplasm.The BnMLP2 gene was expressed in all tissues of ramie,and its expression was significantly induced by drought,especially in stems.Under drought stress,transgenic Arabidopsis overexpressing BnMLP2 exhibited stronger drought tolerance compared to wild-type plants,as evidenced by significantly increased root length and fresh weight,enhanced antioxidant enzyme and γ-glutamylcysteine ligase (γ-GCL) activities,and accumulation of more proline (Pro),glutathione(GSH),glutathione disulfide (GSSG),and phytochelatins (PCs) to regulate intracellular ion homeostasis.The contents of malondialdehyde (MDA)and hydrogen peroxide (H2O2)in transgenic lines were significantly lower than in wild-type plants,at 55% and 80% of wild-type levels,respectively.In addition, the content of sodium and potassium ions in transgenic Arabidopsis under drought conditions was 4.4 times and 1.4 times higher than that of the wild type, respectively. Overexpression of BnMLP2 induced increased expression of three stress-related genes,AtMT1a,AtNCED3,and AtWRKY40,with maximum expression levels of 1.5,1.9,and 2.8 times those in wild-type plants,respectively.These results suggest that the BnMLP2 gene enhances the tolerance of Arabidopsis to drought stress.

  • WANG Lina, GAO Kang, KANG Chen, TIAN Zhejuan, LI Yadong, WANG Peng, LI Zhaowei, WU Zhiming
    Abstract (93) PDF (65) RichHTML (5)

    This study aims to identify potential proteins that interact with the coat protein(CP)of Tomato chlorosis virus (ToCV)from a cDNA library,to explore the infection mechanism of ToCV and the role of CP in the infection process.The research highlights the significant impact of Tomato chlorosis virus disease on tomato yield and quality during summer and late-autumn production.The Moneymaker tomato variety infected with ToCV was used as the experimental material.Using Gateway technology,a nuclear yeast cDNA library was constructed from ToCV-infected tomatoes,and a yeast two-hybrid bait vector,pGBKT7-CP(CP-BD),was developed.CP was employed as the bait protein to screen the nuclear yeast cDNA library,identifying hundreds of potential interacting proteins involved in various physiological processes.Further verification was performed using one-on-one yeast two-hybrid assays and NCBI BLAST analysis to confirm the proteins interacting with ToCV CP.The constructed nuclear yeast cDNA library had a primary capacity of 1.60×107,with a 100% recombination rate and an average insert size exceeding 1 000 bp.The secondary library also achieved a capacity of 1.60×107,with a 100% recombination rate and an average insert size greater than 1 000 bp,meeting the quality standards for subsequent yeast hybridization experiments.Proteins interacting with ToCV CP,identified through library screening,were categorized into cellular processes,biological regulation,and intracellular material transport.Notably,many of these proteins were associated with processes such as viral replication and transport,host cell infection,and the regulation of host cell metabolism and the cell cycle.Additionally,the identified proteins included those with functions such as protein binding,nucleic acid binding,and hydrolase activity.Among these,ribonucleases were the most abundant,playing a critical role in the viral infection process.Ultimately,30 proteins,including HSPs,DnaJ,and TCPs,were confirmed to interact with ToCV CP.These findings provide a strong foundation for further research into the infection mechanism of ToCV and the functional role of CP in the infection process.

  • XU Xinrui, SONG Zelong, LI Erfeng
    Abstract (91) PDF (73) RichHTML (3)

    Cabbage fusarium wilt is a serious soil-borne fungal disease caused by Fusarium oxysporum f.sp.conglutinans (FOC),which affects the yield and quality of cabbage.In order to clarify the biological function of the transcription factor SNT2 in this pathogen,the SNT2 gene knockout mutant ΔSNT2 in F.oxysporum was successfully obtained by homologous recombination and protoplast transformation,and its phenotype and pathogenicity were analyzed.The results showed that SNT2 in F.oxysporum encoded 1 529 amino acids,had a SANT domain that binds to DNA,and the protein belonged to a hydrophilic protein.Compared with the wild type strain,the mycelial growth rate of the ΔSNT2 mutant decreased and the septation increased significantly,and the conidial production decreased significantly.Based on the results of exogenous stress,ΔSNT2 was insensitive to osmotic stress of 1 mol/L sorbitol,but its tolerance to oxygen stress,salt stress and cell wall stress of 0.1% H2O2,2 mol/L NaCl and 0.05% Congo red was reduced.At the same time,the pathogenicity test showed that the disease index of ΔSNT2 mutant was significantly lower than that of wild type,and the deletion of SNT2 resulted in a significant decrease in the pathogenicity of F.oxysporum.In conclusion,the transcription factor SNT2 plays an important role in maintaining the integrity of the cell wall during the interaction between the pathogen and the host,and participates in the regulation of the growth and development of F.oxysporum and the expression of pathogenicity.

  • ZHANG Li, ZHANG Wei, GUO Bingcheng, GUO Jinli
    Abstract (88) PDF (36) RichHTML (4)

    The aim of this study was to investigate the relationship between calcium uptake,indoleacetic acid(IAA)and organic acid metabolism during the development and ripening of Cerasus humilis fruits,in order to provide a basis for further research and applications of Cerasus humilis.The high calcium and low calcium Cerasus humilis fruits from Inner Mongolia were taken as the experimental materials.Samples were taken at different stages of fruit development and ripening,including the young fruit stage(S1),hard kernel stage(S2),coloring and enlargement stage(S3),hard ripening stage(S4),and fully ripe stage(S5),this study investigated the changes of calcium uptake capacity,IAA,and organic acid metabolism,and carried out correlation analysis.The results indicated that the uptake capacity of water-soluble calcium continuously increased throughout the development and ripening of Cerasus humilis fruits,with a marked rise in uptake activity,uptake rate,and uptake amount at the fully ripe stage;the uptake capacity of calcium pectin was higher from the young fruit stage to hard kernel stage but declined in the later stages of fruit development,with a significant reduction in uptake activity,uptake rate,and uptake amount at the fully ripe stage;the uptake capacity for active calcium and total calcium followed trends similar to those observed for calcium pectin.During fruit development and ripening,the IAA content in Cerasus humilis fruits showed a pattern of initially increasing and then decreasing,with significantly higher levels during the the young fruit stage and hard kernel stage compared to other stages.The activity of NAD-MDH,as well as malic acid content and organic acid total content,generally increased,peaking at the hard ripening stage.The activity of NADP-ME declined overall,while citric acid content increased initially and then decreased,reaching its highest point at the hard kernel stage.Correlation analysis revealed varying degrees of correlation between IAA content,organic acid metabolism indicators,and the uptake capacity of different calcium forms in high-calcium and low-calcium Cerasus humilis fruits.Specifically,IAA content was positively correlated with the uptake capacity of total calcium;the activity of NAD-MDH,malic acid content,and organic acid total content was negatively correlated with total calcium uptake capacity;while the activity of NADP-ME and citric acid content was positively correlated with total calcium uptake capacity.During the development and ripening of Cerasus humilis fruits,calcium uptake is associated with IAA content and organic acid metabolism.High levels of IAA and citric acid contents during the early stages of fruit development significantly promote calcium uptake,whereas enhanced malic acid synthesis and metabolism in the later stages of fruit development inhibits calcium uptake.

  • MA Tao, WU Jun, LI Wenling, CAI Liqun, WANG Caizhou, BA Sanjie
    Abstract (86) PDF (109) RichHTML (12)

    In order to explore the effect of partial replacement of chemical fertilizer by organic fertilizer on the ecological stoichiometric characteristics of soil carbon,nitrogen and phosphorus in the Loess Plateau of Eastern Qinghai,a field experiment was conducted with continuous cropping of potato(Qingshu 9).This field experiment was established in 2022 with five treatments,i.e.no fertilizer(CK),100% chemical fertilizer(T1),30% organic fertilizer+70% chemical fertilizer(T2),50% organic fertilizer+50% chemical fertilizer(T3),and 70% organic fertilizer+30% chemical fertilizer(T4).Soil contents of organic carbon,total nitrogen,total phosphorus,alkali-hydrolyzable nitrogen,available phosphorus,microbial biomass carbon,nitrogen,phosphorus and soil-microbial biomass ecological stoichiometry were determined.The results showed that compared with 2022,the contents of soil organic carbon,total nitrogen,total phosphorus,alkali-hydrolyzable nitrogen,available phosphorus and microbial biomass carbon,nitrogen and phosphorus in each fertilization treatment in 2023 showed an increasing trend,while the CK treatment showed a decreasing trend.Among different soil layers,the content of each index gradually decreased with the increase of soil depth.Among different treatments,according to the content of each index,the order was T3>T4>T2>T1>CK.In the 0—30 cm soil layer,the contents of soil organic carbon,total nitrogen,total phosphorus,alkali-hydrolyzable nitrogen,available phosphorus and microbial biomass carbon,nitrogen and phosphorus under T3 treatment were 6.88%,17.65%,17.88%,84.71%,77.01%,65.67%,80.07%,54.91% higher than those of CK,respectively.The soil C∶N and C∶P in each soil layer were the highest in the CK treatment.Among the four fertilization treatments,soil C∶N,microbial biomass C∶N and C∶P were the lowest in the T3 treatment.In addition to the 0—10 cm soil layer in 2023,the soil C∶P in each soil layer was also the lowest in T3,while the microbial biomass N∶P in the T1 treatment was the lowest among all fertilization treatments.Soil C∶N and C∶P increased with soil depth.Correlation analysis showed that organic carbon,total nitrogen,total phosphorus,available nitrogen,available phosphorus and microbial biomass carbon,nitrogen and phosphorus were significantly positively correlated with each other.In summary,the substitution of organic fertilizer for chemical fertilizer can not only change the soil nutrient and soil microbial biomass content,but also change the soil ecological stoichiometry characteristics,and the treatment with 50% organic fertilizer+50% chemical fertilizer has the best effect.

  • YUAN Xueyun, CHEN Chen, YAN Yue, WEI Yongju, WANG Lixiang, SUN Xu, SUN Yuehua, LI Yapeng, LIU Peizhuo, XIONG Aisheng
    Abstract (83) PDF (60) RichHTML (9)

    Explore the effects of amino acid type water-soluble fertilizer on chlorophyll content and proportion of celery,and the regulation of gene expression related to chlorophyll metabolism,which provides a theoretical basis for the rational application of amino acid type water-soluble fertilizer foliar fertilizer in the production of high-quality pigment-rich celery.The celery variety Ningqin 1 was sprayed with different concentrations of amino acid type water-soluble fertilizer,the contents of chlorophyll a,chlorophyll b and total chlorophyll in leaf blades and petioles were determined and analyzed,and the relative expression levels of genes related to chlorophyll metabolism were determined by fluorescence quantitative PCR(RT-qPCR).The effects of amino acid type water-soluble fertilizer on chlorophyll accumulation and relative expression levels of related genes were related to the treatment concentration and leaf location.Treatment with 500 μL/L amino acid type water-soluble fertilizer increased the contents of chlorophyll a,chlorophyll b and total chlorophyll in leaf blades and petioles,and decreased the ratio of chlorophyll a/b in petioles.The expression of chlorophyll synthesis-related genes(AgHEMA,AgHEMB,AgCHLM,AgPOR and AgCAO)was induced,and the expression levels of degradation related genes(AgPAO and AgPPH)were significantly down-regulated.Treatment with 1 000 μL/L amino acid type water-soluble fertilizer inhibited chlorophyll accumulation to a certain extent,increased chlorophyll a/b ratio in leaf blades,and significantly down-regulated the expression levels of genes related to chlorophyll synthesis and chlorophyll degradation AgPPH.The suitable concentration of amino acid type water-soluble fertilizer foliar fertilizer can improve the chlorophyll content of celery at seeding stage by regulating the expression level of genes related to chlorophyll metabolism.

  • FENG Qingxiang, ZHU Haxiu, DU Yang, XU Yanru, WANG Chenchen, LIU Xue, LI Dayong, ZHOU Jun, ZHANG Bin
    Abstract (79) PDF (44) RichHTML (5)

    Anthocyanin synthase(ANS)is a key enzyme in the anthocyanin biosynthesis pathway in plants,catalyzing the conversion of colorless leucoanthocyanidins into colorful anthocyanins such as red,orange,and blue.To investigate the molecular mechanism of ANS gene in leaf coloration regulation in chicory(Cichorium intybus),bioinformatics analysis of ANS was first conducted.Then,the red heading C.intybus(Indiou)and green forage variety(Puna)were selected as the materials to clone the C.intybus ANS (CiANS)gene.Differences in amino acid sequences and protein structures of CiANS between the two materials were analyzed.Finally,tissue-specific expression of the ANS gene and subcellular localization of CiANS were characterized,and prokaryotic expression of the CiANS was performed.The results showed that CiANS shared the closest phylogenetic relationship with ANS from lettuce(Lactuca sativa)and endive(C.endivia).Motif analysis revealed that the protein motifs of CiANS were relatively conserved across different plant species.Cloning results indicated that the full-length ANS gene in both chicory varieties was 1 068 bp,encoding 355 amino acids with 9 divergent residues,though no significant differences were observed in predicted tertiary structures.qRT-PCR results demonstrated that CiANS was expressed in all tissues,with the highest expression level in leaves,and its expression in red heading Indiou was significantly higher than in green Puna.Subcellular localization revealed that CiANS protein was localized in both the cytoplasm and nucleus.After prokaryotic expression,the induced CiANS protein exhibited a molecular weight of 45 ku,consistent with the predicted size.In conclusion,the observed leaf color variation in C.intybus is likely associated with differential expression levels of the CiANS gene.This study provides theoretical insights for elucidating the molecular regulatory network of Cichorium intybus leaf coloration and genetic improvement of anthocyanin metabolism.

News More
High impact papers More
Copyright
QR Code
  • 《Acta Agriculturae Boreali-Sinica》Official Website

  • Wechat Official Account