[1] |
Colin L, Ruhnow F, Zhu J K, Zhao C Z, Zhao Y, Persson S. The cell biology of primary cell walls during salt stress[J]. The Plant Cell, 2023, 35(1):201-217.doi: 10.1093/plcell/koac292.
|
[2] |
Åkerfelt M, Morimoto R I, Sistonen L. Heat shock factors:integrators of cell stress,development and lifespan[J]. Nature Reviews Molecular Cell Biology, 2010, 11(8):545-555.doi: 10.1038/nrm2938.
|
[3] |
Scharf K D, Rose S, Zott W, Schöffl F, Schöff F, Nover L. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF[J]. The EMBO Journal, 1990, 9(13):4495-4501.doi: 10.1002/j.1460-2075.1990.tb07900.x.
|
[4] |
Nover L, Bharti K, Döring P, Mishra S K, Ganguli A, Scharf K D. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress & Chaperones, 2001, 6(3):177-189.doi: 10.1379/1466-1268(2001)0060177:aathst>2.0.co;2.
|
[5] |
Duan S N, Liu B H, Zhang Y Y, Li G L, Guo X L. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L.[J]. BMC Genomics, 2019, 20(1):257.doi: 10.1186/s12864-019-5617-1.
|
[6] |
Zhang H N, Li G L, Fu C, Duan S N, Hu D, Guo X L. Genome-wide identification,transcriptome analysis and alternative splicing events of Hsf family genes in maize[J]. Scientific Reports, 2020, 10(1):8073.doi: 10.1038/s41598-020-65068-z.
|
[7] |
Shamshad A, Rashid M, Zaman Q U. In-silico analysis of heat shock transcription factor (OsHSF) gene family in rice ( Oryza sativa L.)[J]. BMC Plant Biology, 2023, 23(1):395.doi: 10.1186/s12870-023-04399-1.
|
[8] |
Li P S, Yu T F, He G H, Chen M, Zhou Y B, Chai S C, Xu Z S, Ma Y Z. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses[J]. BMC Genomics, 2014, 15(1):1009.doi: 10.1186/1471-2164-15-1009.
|
[9] |
Yang X D, Zhu W M, Zhang H, Liu N, Tian S B. Heat shock factors in tomatoes:genome-wide identification,phylogenetic analysis and expression profiling under development and heat stress[J]. PeerJ, 2016, 4: e1961.doi: 10.7717/peerj.1961.
|
[10] |
Chen X Q, Wang Z Y, Tang R, Wang L N, Chen C H, Ren Z H. Genome-wide identification and expression analysis of Hsf and Hsp gene families in cucumber ( Cucumis sativus L.)[J]. Plant Growth Regulation, 2021, 95(2):223-239.doi: 10.1007/s10725-021-00739-z.
|
[11] |
Ling C C, Liu Y Y, Yang Z C, Xu J L, Ouyang Z Y, Yang J, Wang S H. Genome-wide identification of HSF gene family in kiwifruit and the function of AeHSFA2b in salt tolerance[J]. International Journal of Molecular Sciences, 2023, 24(21):15638.doi: 10.3390/ijms242115638.
|
[12] |
Huang B, Huang Z N, Ma R F, Chen J L, Zhang Z J, Yrjälä K. Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo ( Phyllostachys edulis)[J]. Scientific Reports, 2021, 11(1):16492.doi: 10.1038/s41598-021-95899-3.
|
[13] |
Panzade K P, Kale S S, Kapale V, Chavan N R. Genome-wide analysis of heat shock transcription factors in Ziziphus jujuba identifies potential candidates for crop improvement under abiotic stress[J]. Applied Biochemistry and Biotechnology, 2021, 193(4):1023-1041.doi: 10.1007/s12010-020-03463-y.
|
[14] |
Yang Q Q, Yang F, Liu C Y, Zhao Y Q, Lu X J, Ge J, Zhang B W, Li M Q, Yang Y, Fan J D. Genome-wide analysis of the HSF family in Allium sativum L.and AsHSFB1 overexpression in Arabidopsis under heat stress[J]. BMC Genomics, 2024, 25(1):1072.doi: 10.1186/s12864-024-11002-w.
|
[15] |
Zhang L, Chen W, Shi B. Genome-wide analysis and expression profiling of the heat shock transcription factor gene family in Physic Nut ( Jatropha curcas L.)[J]. PeerJ, 2020, 8:e8467.doi: 10.7717/peerj.8467.
|
[16] |
Yuan T, Liang J X, Dai J H, Zhou X R, Liao W H, Guo M L, Aslam M, Li S B, Cao G Q, Cao S J. Genome-wide identification of Eucalyptus heat shock transcription factor family and their transcriptional analysis under salt and temperature stresses[J]. International Journal of Molecular Sciences, 2022, 23(14):8044.doi: 10.3390/ijms23148044.
|
[17] |
Liu H, Li X Y, Zi Y F, Zhao G Q, Zhu L H, Hong L, Li M N, Wang S Q, Long R C, Kang J M, Yang Q C, Chen L. Characterization of the heat shock transcription factor family in Medicago sativa L.and its potential roles in response to abiotic stresses[J]. International Journal of Molecular Sciences, 2023, 24(16):12683.doi: 10.3390/ijms241612683.
|
[18] |
Zhang Q, Geng J, Du Y L, Zhao Q, Zhang W J, Fang Q X, Yin Z G, Li J H, Yuan X K, Fan Y R, Cheng X, Du J D. Heat shock transcription factor (Hsf) gene family in common bean ( Phaseolus vulgaris):genome-wide identification,phylogeny,evolutionary expansion and expression analyses at the sprout stage under abiotic stress[J]. BMC Plant Biology, 2022, 22(1):33.doi: 10.1186/s12870-021-03417-4.
|
[19] |
Sun T X, Wang W L, Hu X M, Fang Z F, Wang Y P, Xiang L, Chan Z L. Genome-wide identification of heat shock transcription factor families in perennial ryegrass highlights the role of LpHSFC2b in heat stress response[J]. Physiologia Plantarum, 2022, 174(6):e13828.doi: 10.1111/ppl.13828.
|
[20] |
Wang Q, Zhang Z B, Guo C, Zhao X B, Li Z Y, Mou Y F, Sun Q X, Wang J, Yuan C L, Li C J, Cong P, Shan S H. Hsf transcription factor gene family in peanut ( Arachis hypogaea L.):genome-wide characterization and expression analysis under drought and salt stresses[J]. Frontiers in Plant Science, 2023, 14:1214732.doi: 10.3389/fpls.2023.1214732.
|
[21] |
Kanwar M, Chaudhary C, Anand K A, Singh S, Garg M, Mishra S K, Sirohi P, Chauhan H. An insight into Pisum sativum HSF gene family-Genome-wide identification,phylogenetic,expression,and analysis of transactivation potential of pea heat shock transcription factor[J]. Plant Physiology and Biochemistry, 2023, 202:107971.doi: 10.1016/j.plaphy.2023.107971.
|
[22] |
Li M Y, Zhang R, Zhou J, Du J G, Li X Y, Zhang Y, Chen Q, Wang Y, Lin Y X, Zhang Y T, He W, Wang X R, Xiong A S, Luo Y, Tang H R. Comprehensive analysis of HSF genes from celery ( Apium graveolens L.) and functional characterization of AgHSFa6-1 in response to heat stress[J]. Frontiers in Plant Science, 2023, 14:1132307.doi: 10.3389/fpls.2023.1132307.
|
[23] |
Qu R J, Wang S W, Wang X X, Peng J M, Guo J, Cui G H, Chen M L, Mu J, Lai C, Huang L Q, Wang S, Shen Y. Genome-wide characterization and expression of the Hsf gene family in Salvia miltiorrhiza (Danshen) and the potential thermotolerance of SmHsf1 and SmHsf7 in yeast[J]. International Journal of Molecular Sciences, 2023, 24(10):8461.doi: 10.3390/ijms24108461.
|
[24] |
Li L L, Ju Y Q, Zhang C P, Tong B Q, Lu Y Z, Xie X M, Li W. Genome-wide analysis of the heat shock transcription factor family reveals saline-alkali stress responses in Xanthoceras sorbifolium[J]. PeerJ, 2023, 11:e15929.doi: 10.7717/peerj.15929.
|
[25] |
Zhao D X, Qi X Y, Zhang Y, Zhang R L, Wang C, Sun T X, Zheng J, Lu Y Z. Genome-wide analysis of the heat shock transcription factor gene family in Sorbus pohuashanensis (Hance) Hedl identifies potential candidates for resistance to abiotic stresses[J]. Plant Physiology and Biochemistry, 2022, 175:68-80.doi: 10.1016/j.plaphy.2022.02.005.
|
[26] |
Li C H, Li Y H, Zhou Z, Huang Y D, Tu Z Z, Zhuo X, Tian D Y, Liu Y B, Di H L, Lin Z, Shi M X, He X, Xu H Y, Zheng Y, Mu Z S. Genome-wide identification and comprehensive analysis heat shock transcription factor (Hsf) members in Asparagus( Asparagus officinalis) at the seeding stage under abiotic stresses[J]. Scientific Reports, 2023, 13:18103.doi: 10.1038/s41598-023-45322-w.
|
[27] |
Zhao K, Dang H, Zhou L D, Hu J, Jin X, Han Y Z, Wang S J. Genome-wide identification and expression analysis of the HSF gene family in poplar[J]. Forests, 2023, 14(3):510.doi: 10.3390/f14030510.
|
[28] |
Hu Y, Han Y T, Zhang K, Zhao F L, Li Y J, Zheng Y, Wang Y J, Wen Y Q. Identification and expression analysis of heat shock transcription factors in the wild Chinese grapevine ( Vitis pseudoreticulata)[J]. Plant Physiology and Biochemistry, 2016, 99:1-10.doi: 10.1016/j.plaphy.2015.11.020.
|
[29] |
Dossa K, Diouf D, Cissé N. Genome-wide investigation of hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response[J]. Frontiers in Plant Science, 2016, 7:1522.doi: 10.3389/fpls.2016.01522.
|
[30] |
Tan B, Yan L, Li H N, Lian X D, Cheng J, Wang W, Zheng X B, Wang X B, Li J D, Ye X, Zhang L L, Li Z Q, Feng J C. Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development[J]. PeerJ, 2021, 9:e10961.doi: 10.7717/peerj.10961.
|
[31] |
Li X T, Feng X Y, Zeng Z, Liu Y, Shao Z Q. Comparative analysis of HSF genes from Secale cereale and its triticeae relatives reveal ancient and recent gene expansions[J]. Frontiers in Genetics, 2021, 12:801218.doi: 10.3389/fgene.2021.801218.
|
[32] |
Zhu X Y, Huang C Q, Zhang L, Liu H F, Yu J H, Hu Z Y, Hua W. Systematic analysis of Hsf family genes in the Brassica napus genome reveals novel responses to heat,drought and high CO 2 stresses[J]. Frontiers in Plant Science, 2017, 8:1174.doi: 10.3389/fpls.2017.01174.
|
[33] |
Li W, Wan X L, Yu J Y, Wang K L, Zhang J. Genome-wide identification,classification,and expression analysis of the Hsf gene family in carnation ( Dianthus caryophyllus)[J]. International Journal of Molecular Sciences, 2019, 20(20):5233.doi: 10.3390/ijms20205233.
|
[34] |
Wang L L, Liu Y H, Chai M N, Chen H H, Aslam M, Niu X P, Qin Y, Cai H Y. Genome-wide identification,classification,and expression analysis of the HSF gene family in pineapple ( Ananas comosus)[J]. PeerJ, 2021, 9:e11329.doi: 10.7717/peerj.11329.
|
[35] |
Wang L L, Liu Y H, Chai G F, Zhang D, Fang Y Y, Deng K, Aslam M, Niu X P, Zhang W B, Qin Y, Wang X M. Identification of passion fruit HSF gene family and the functional analysis of PeHSF-C1a in response to heat and osmotic stress[J]. Plant Physiology and Biochemistry, 2023, 200:107800.doi: 10.1016/j.plaphy.2023.107800.
|
[36] |
Zhang X Y, Xu W L, Ni D J, Wang M L, Guo G Y. Genome-wide characterization of tea plant ( Camellia sinensis) Hsf transcription factor family and role of CsHsfA2 in heat tolerance[J]. BMC Plant Biology, 2020, 20(1):244.doi: 10.1186/s12870-020-02462-9.
|
[37] |
Wan X L, Yang J, Guo C, Bao M Z, Zhang J W. Genome-wide identification and classification of the Hsf and sHsp gene families in Prunus mume,and transcriptional analysis under heat stress[J]. PeerJ, 2019, 7:e7312.doi: 10.7717/peerj.7312.
|
[38] |
Fu J X, Huang S Y, Qian J Y, Qing H S, Wan Z Y, Cheng H F, Zhang C. Genome-wide identification of Petunia HSF genes and potential function of PhHSF19 in benzenoid/phenylpropanoid biosynthesis[J]. International Journal of Molecular Sciences, 2022, 23(6):2974.doi: 10.3390/ijms23062974.
|
[39] |
Liu M Y, Huang Q, Sun W J, Ma Z T, Huang L, Wu Q, Tang Z Z, Bu T L, Li C L, Chen H. Genome-wide investigation of the heat shock transcription factor (Hsf) gene family in Tartary buckwheat ( Fagopyrum tataricum)[J]. BMC Genomics, 2019, 20(1):871.doi: 10.1186/s12864-019-6205-0.
|
[40] |
Liao W H, Tang X H, Li J S, Zheng Q M, Wang T, Cheng S Z, Chen S P, Cao S J, Cao G Q. Genome wide investigation of Hsf gene family in Phoebe bournei:identification,evolution,and expression after abiotic stresses[J]. Journal of Forestry Research, 2023, 35(1):11.doi: 10.1007/s11676-023-01661-y.
|
[41] |
Lin Q, Jiang Q, Lin J Y, Wang D L, Li S J, Liu C R, Sun C D, Chen K S. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan ( Citrus reticulata Blanco cv. Ponkan) fruit[J]. Gene, 2015, 559(2):129-136.doi: 10.1016/j.gene.2015.01.024.
|
[42] |
Wang J L, Hu H J, Wang W H, Wei Q Z, Hu T H, Bao C L. Genome-wide identification and functional characterization of the heat shock factor family in eggplant ( Solanum melongena L.) under abiotic stress conditions[J]. Plants, 2020, 9(7):915.doi: 10.3390/plants9070915.
|
[43] |
Liu X J, Meng P P, Yang G Y, Zhang M Y, Peng S B, Zhai M Z. Genome-wide identification and transcript profiles of walnut heat stress transcription factor involved in abiotic stress[J]. BMC Genomics, 2020, 21(1):474.doi: 10.1186/s12864-020-06879-2.
|
[44] |
|
|
Han L H, Liu C, Zhang W W, Li F, Deng F H, Ruan Z H. Gene family identification and bioinformatics analysis of heat shock transcription factors(Hsf)in Dendrobium officinale[J]. Journal of Southern Agriculture, 2019, 50(4):677-684.
|
[45] |
Scharf K D, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family:structure,function and evolution[J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, 1819(2):104-119.doi: 10.1016/j.bbagrm.2011.10.002.
|
[46] |
Andrási N, Pettkó -Szandtner A, Szabados L. Diversity of plant heat shock factors:regulation,interactions,and functions[J]. Journal of Experimental Botany, 2021, 72(5):1558-1575.doi: 10.1093/jxb/eraa576.
|
[47] |
Wang X M, Shi X, Chen S Y, Ma C, Xu S B. Evolutionary origin,gradual accumulation and functional divergence of heat shock factor gene family with plant evolution[J]. Frontiers in Plant Science, 2018, 9:71.doi: 10.3389/fpls.2018.00071.
|
[48] |
Zhang H Z, Zhang X T, Meng M, Di H Y, Wang J G. Populus trichocarpa PtHSFA4a enhances heat tolerance by regulating expression of APX1 and HSPs[J]. Forests, 2023, 14(10):2028.doi: 10.3390/f14102028.
|
[49] |
Sakurai H, Enoki Y. Novel aspects of heat shock factors:DNA recognition,chromatin modulation and gene expression[J]. The FEBS Journal, 2010, 277(20):4140-4149.doi: 10.1111/j.1742-4658.2010.07829.x.
|
[50] |
Guo M, Liu J H, Ma X, Luo D X, Gong Z H, Lu M H. The plant heat stress transcription factors (HSFs):structure,regulation,and function in response to abiotic stresses[J]. Frontiers in Plant Science, 2016, 7:114.doi: 10.3389/fpls.2016.00114.
|
[51] |
Fragkostefanakis S, Röth S, Schleiff E, Scharf K D. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks[J]. Plant,Cell & Environment, 2015, 38(9):1881-1895.doi: 10.1111/pce.12396.
|
[52] |
Lyu X P, Shao K Z, Xu J Y, Li J L, Ren W, Chen J, Zhao L Y, Zhao Q, Zhang J L. A heat shock transcription factor gene ( HaHSFA1)from a desert shrub, Haloxylon ammodendron,elevates salt tolerance in Arabidopsis thaliana[J]. Environmental and Experimental Botany, 2022, 201:104954.doi: 10.1016/j.envexpbot.2022.104954.
|
[53] |
Hao X M, He S T. Genome-wide identification,classification and expression analysis of the heat shock transcription factor family in Garlic ( Allium sativum L.)[J]. BMC Plant Biology, 2024, 24(1):421.doi: 10.1186/s12870-024-05018-3.
|
[54] |
Bakery A, Vraggalas S, Shalha B, Chauhan H, Benhamed M, Fragkostefanakis S. Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress[J]. New Phytologist, 2024, 244(1):51-64.doi: 10.1111/nph.20017.
|
[55] |
汤彬, 耿存娟, 曾强, 郭欢乐, 李涵, 曹钟洋, 邓力超, 彭明, 周虹, 陈志辉. 玉米自交系籽粒响应高温胁迫的转录组分析[J]. 华北农学报, 2023, 38(4): 11-19. doi: 10.7668/hbnxb.20193984.
|
|
Tang B, Geng C J, Zeng Q, Guo H L, Li H, Cao Z Y, Deng L C, Peng M, Zhou H, Chen Z H. Kernel transcriptome analysis of maize inbred lines in response to high temperature stress[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(4): 11-19.
|
[56] |
Liu H T, Gao F, Li G L, Han J L, Liu D L, Sun D Y, Zhou R G. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana[J]. The Plant Journal, 2008, 55(5):760-773.doi: 10.1111/j.1365-313x.2008.03544.x.
|
[57] |
Liu H T, Li B, Shang Z L, Li X Z, Mu R L, Sun D Y, Zhou R G. Calmodulin is involved in heat shock signal transduction in wheat[J]. Plant Physiology, 2003, 132(3):1186-1195.doi: 10.1104/pp.102.018564.
|
[58] |
Wei S Q, Chen M J, Wang F Y, Tu Y S, Xu Y F, Fu L B, Zeng F R, Zhang G P, Wu D Z, Shen Q F. OsCaM1-1 is responsible for salt tolerance by regulating Na +/K + homoeostasis in rice[J]. Plant,Cell & Environment, 2025, 48(2):1393-1408.doi: 10.1111/pce.15212.
|
[59] |
Zhou Y Z, Wang Y, Xu F X, Song C X, Yang X, Zhang Z, Yi M F, Ma N, Zhou X F, He J N. Small HSPs play an important role in crosstalk between HSF-HSP and ROS pathways in heat stress response through transcriptomic analysis in lilies ( Lilium longiflorum)[J]. BMC Plant Biology, 2022, 22(1):202.doi: 10.1186/s12870-022-03587-9.
|
[60] |
Zang D D, Wang J X, Zhang X, Liu Z J, Wang Y C. Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression[J]. Journal of Experimental Botany, 2019, 70(19):5355-5374.doi: 10.1093/jxb/erz261.
|
[61] |
Zhu M D, Zhang M, Gao D J, Zhou K, Tang S J, Zhou B, Lyu Y M. Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels[J]. International Journal of Molecular Sciences, 2020, 21(5):1857.doi: 10.3390/ijms21051857.
|
[62] |
Shah Z, Iqbal A, Khan F U, Khan H U, Durrani F, Ahmad M Z. Genetic manipulation of pea ( Pisum sativum L.) with Arabidopsis's heat shock factor HsfA1d improves ROS scavenging system to confront thermal stress[J]. Genetic Resources and Crop Evolution, 2020, 67(8):2119-2127.doi: 10.1007/s10722-020-00966-9.
|
[63] |
Wang W J, Chen Q B, Singh P K, Huang Y Y, Pei D L. CRISPR/Cas9 edited HSFA6a and HSFA6b of Arabidopsis thaliana offers ABA and osmotic stress insensitivity by modulation of ROS homeostasis[J]. Plant Signaling & Behavior, 2020, 15(12):1816321.doi: 10.1080/15592324.2020.1816321.
|
[64] |
Ma Z Y, Zhao B H, Zhang H N, Duan S N, Liu Z H, Guo X L, Meng X Z, Li G L. Upregulation of wheat heat shock transcription factor TaHsfC3-4 by ABA contributes to drought tolerance[J]. International Journal of Molecular Sciences, 2024, 25(2):977.doi: 10.3390/ijms25020977.
|
[65] |
Jiang Y L, Zheng Q Q, Chen L, Liang Y N, Wu J D. Ectopic overexpression of maize heat shock transcription factor gene ZmHsf04 confers increased thermo and salt-stress tolerance in transgenic Arabidopsis[J]. Acta Physiologiae Plantarum, 2017, 40(1):9.doi: 10.1007/s11738-017-2587-2.
|
[66] |
Bharti K, Schmidt E, Lyck R, Heerklotz D, Bublak D, Scharf K D. Isolation and characterization of HsfA3,a new heat stress transcription factor of Lycopersicon peruvianum[J]. The Plant Journal, 2000, 22(4):355-365.doi: 10.1046/j.1365-313x.2000.00746.x.
|
[67] |
Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress[J]. Plant and Cell Physiology, 2011, 52(5):933-945.doi: 10.1093/pcp/pcr045.
|
[68] |
Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance[J]. Plant Physiology, 2011, 157(3):1243-1254.doi: 10.1104/pp.111.179036.
|
[69] |
Mittal D, Enoki Y, Lavania D, Singh A, Sakurai H, Grover A. Binding affinities and interactions among different heat shock element types and heat shock factors in rice ( Oryza sativa L.)[J]. The FEBS Journal, 2011, 278(17):3076-3085.doi: 10.1111/j.1742-4658.2011.08229.x.
|
[70] |
Wu Z, Li T, Ding L P, Wang C P, Teng R D, Xu S J, Cao X, Teng N J. Lily LlHSFC2 coordinates with HSFAs to balance heat stress response and improve thermotolerance[J]. New Phytologist, 2024, 241(5):2124-2142.doi: 10.1111/nph.19507.
|
[71] |
Li H C, Zhang H N, Li G L, Liu Z H, Zhang Y M, Zhang H M, Guo X L. Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis[J]. Functional Plant Biology, 2015, 42(11):1080-1091.doi: 10.1071/fp15080.
|
[72] |
Hashikawa N, Sakurai H. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element[J]. Molecular and Cellular Biology, 2004, 24(9):3648-3659.doi: 10.1128/mcb.24.9.3648-3659.2004.
|
[73] |
Pérez-Salamó I, Papdi C, Rigó G, Zsigmond L, Vilela B, Lumbreras V, Nagy I, Horváth B, Domoki M, Darula Z, Medzihradszky K, Bögre L, Koncz C, Szabados L. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6[J]. Plant Physiology, 2014, 165(1):319-334.doi: 10.1104/pp.114.237891.
|
[74] |
Evrard A, Kumar M, Lecourieux D, Lucks J, von Koskull-Döring P, Hirt H. Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2[J]. PeerJ, 2013, 1:e59.doi: 10.7717/peerj.59.
|
[75] |
Zhang M Y, Zhao A, Guo C, Guo L Z. A combined modelling and experimental study of heat shock factor SUMOylation in response to heat shock[J]. Journal of Theoretical Biology, 2021, 530:110877.doi: 10.1016/j.jtbi.2021.110877.
|
[76] |
Wang H R, Feng M, Jiang Y J, Du D J, Dong C Q, Zhang Z H, Wang W X, Liu J, Liu X Q, Li S F, Chen Y M, Guo W L, Xin M M, Yao Y Y, Ni Z F, Sun Q X, Peng H R, Liu J. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat[J]. The Plant Cell, 2023, 35(10):3889-3910.doi: 10.1093/plcell/koad192.
|
[77] |
Mei W B, Boatwright L, Feng G Q, Schnable J C, Barbazuk W B. Evolutionarily conserved alternative splicing across monocots[J]. Genetics, 2017, 207(2):465-480.doi: 10.1534/genetics.117.300189.
|
[78] |
Peng S B, Zhu Z G, Zhao K, Shi J L, Yang Y Z, He M Y, Wang Y J. A novel heat shock transcription factor,VpHsf1,from Chinese wild Vitis pseudoreticulata is involved in biotic and abiotic stresses[J]. Plant Molecular Biology Reporter, 2013, 31(1):240-247.doi: 10.1007/s11105-012-0463-1.
|
[79] |
Wu Z, Liang J H, Wang C P, Ding L P, Zhao X, Cao X, Xu S J, Teng N J, Yi M F. Alternative splicing provides a mechanism to regulate LlHSFA3 function in response to heat stress in lily[J]. Plant Physiology, 2019, 181(4):1651-1667.doi: 10.1104/pp.19.00839.
|
[80] |
Cheng Q, Zhou Y, Liu Z, Zhang L, Song G, Guo Z, Wang W, Qu X, Zhu Y, Yang D. An alternatively spliced heat shock transcription factor, OsHSFA2dI,functions in the heat stress-induced unfolded protein response in rice[J]. Plant Biology, 2015, 17(2):419-429.doi: 10.1111/plb.12267.
|
[81] |
Keller M, Hu Y J, Mesihovic A, Fragkostefanakis S, Schleiff E, Simm S. Alternative splicing in tomato pollen in response to heat stress[J]. DNA Research, 2017, 24(2):205-217.doi: 10.1093/dnares/dsw051.
|
[82] |
Wen J J, Qin Z, Sun L, Zhang Y M, Wang D L, Peng H R, Yao Y Y, Hu Z R, Ni Z F, Sun Q X, Xin M M. Alternative splicing of TaHSFA6e modulates heat shock protein-mediated translational regulation in response to heat stress in wheat[J]. New Phytologist, 2023, 239(6):2235-2247.doi: 10.1111/nph.19100.
|
[83] |
|
|
Wei Q. Functional analysis of heat stress memory key genes HaHsfA2a and Haft-9 under abiotic stress in Haloxylon ammodendron[D]. Urumqi: Xinjiang Agricultural University, 2023.
|
[84] |
Morimoto R I. Regulation of the heat shock transcriptional response:cross talk between a family of heat shock factors,molecular chaperones,and negative regulators[J]. Genes & Development, 1998, 12(24):3788-3796.doi: 10.1101/gad.12.24.3788.
|
[85] |
Lin Y X, Jiang H Y, Chu Z X, Tang X L, Zhu S W, Cheng B J. Genome-wide identification,classification and analysis of heat shock transcription factor family in maize[J]. BMC Genomics, 2011, 12(1):76.doi: 10.1186/1471-2164-12-76.
|
[86] |
Hahn A, Bublak D, Schleiff E, Scharf K D. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato[J]. The Plant Cell, 2011, 23(2):741-755.doi: 10.1105/tpc.110.076018.
|
[87] |
Li Z J, Zhang L L, Wang A X, Xu X Y, Li J F. Ectopic overexpression of SlHsfA3,a heat stress transcription factor from tomato,confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis[J]. PLoS One, 2013, 8(1):e54880.doi: 10.1371/journal.pone.0054880.
|
[88] |
Busch W, Wunderlich M, Schöffl F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana[J]. The Plant Journal, 2005, 41(1):1-14.doi: 10.1111/j.1365-313x.2004.02272.x.
|
[89] |
Lohmann C, Eggers-Schumacher G, Wunderlich M, Schöffl F. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis[J]. Molecular Genetics and Genomics, 2004, 271(1):11-21.doi: 10.1007/s00438-003-0954-8.
|
[90] |
Liu H C, Charng Y Y. Acquired thermotolerance independent of heat shock factor A1 ( HsfA1),the master regulator of the heat stress response[J]. Plant Signaling & Behavior, 2012, 7(5):547-550.doi: 10.4161/psb.19803.
|
[91] |
Liu H C, Charng Y Y. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development[J]. Plant Physiology, 2013, 163(1):276-290.doi: 10.1104/pp.113.221168.
|
[92] |
Chung B Y W, Balcerowicz M, Di Antonio M, Jaeger K E, Geng F, Franaszek K, Marriott P, Brierley I, Firth A E, Wigge P A. An RNA thermoswitch regulates daytime growth in Arabidopsis[J]. Nature Plants, 2020, 6(5):522-532.doi: 10.1038/s41477-020-0633-3.
|
[93] |
Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system[J]. Biochemical and Biophysical Research Communications, 2008, 368(3):515-521.doi: 10.1016/j.bbrc.2008.01.134.
|
[94] |
Guo Z J, Zuo Y X, Wang S Y, Zhang X, Wang Z Y, Liu Y H, Shen Y B. Early signaling enhance heat tolerance in Arabidopsis through modulating jasmonic acid synthesis mediated by HSFA2[J]. International Journal of Biological Macromolecules, 2024, 267:131256.doi: 10.1016/j.ijbiomac.2024.131256.
|
[95] |
Lämke J, Brzezinka K, Bäurle I. HSFA2 orchestrates transcriptional dynamics after heat stress in Arabidopsis thaliana[J]. Transcription, 2016, 7(4):111-114.doi: 10.1080/21541264.2016.1187550.
|
[96] |
Liu J Z, Feng L L, Gu X T, Deng X, Qiu Q, Li Q, Zhang Y Y, Wang M Y, Deng Y W, Wang E T, He Y K, Bäurle I, Li J M, Cao X F, He Z H. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis[J]. Cell Research, 2019, 29(5):379-390.doi: 10.1038/s41422-019-0145-8.
|
[97] |
Chen H, Hwang J E, Lim C J, Kim D Y, Lee S Y, Lim C O. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response[J]. Biochemical and Biophysical Research Communications, 2010, 401(2):238-244.doi: 10.1016/j.bbrc.2010.09.038.
|
[98] |
Ma G J, Liu Z H, Song S R, Gao J, Liao S J, Cao S L, Xie Y, Cao L W, Hu L X, Jing H C, Chen L. The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass ( Lolium perenne L.)[J]. Journal of Integrative Plant Biology, 2024, 66(11):2346-2361.doi: 10.1111/jipb.13789.
|
[99] |
Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A. Heat shock factor gene family in rice:genomic organization and transcript expression profiling in response to high temperature,low temperature and oxidative stresses[J]. Plant Physiology and Biochemistry, 2009, 47(9):785-795.doi: 10.1016/j.plaphy.2009.05.003.
|
[100] |
Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis[J]. Planta, 2008, 227(5):957-967.doi: 10.1007/s00425-007-0670-4.
|
[101] |
Liu A L, Zou J, Zhang X W, Zhou X Y, Wang W F, Xiong X Y, Chen L Y, Chen X B. Expression profiles of class A rice heat shock transcription factor genes under abiotic stresses[J]. Journal of Plant Biology, 2010, 53(2):142-149.doi: 10.1007/s12374-010-9099-6.
|
[102] |
|
|
Zou X W, Yue J N, Li Z Y, Dai L Y, Li W. Functional analysis of rice heat shock transcription factor HsfA2b regulating the resistance to abiotic stresses[J]. Biotechnology Bulletin, 2024, 40(2):90-98.
|
[103] |
Bharti K, von Koskull-Döring P, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E, Nover L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1[J]. The Plant Cell, 2004, 16(6):1521-1535.doi: 10.1105/tpc.019927.
|
[104] |
|
|
Tian Y J, Yin X R, Li X, Chen K S. Regulation of stress responses by heat stress transcription factors(hsfs)in plants[J]. Acta Horticulturae Sinica, 2017, 44(1):179-192.
|
[105] |
Li G L, Zhang H N, Shao H B, Wang G Y, Zhang Y Y, Zhang Y J, Zhao L N, Guo X L, Sheteiwy M S. ZmHsf05,a new heat shock transcription factor from Zea mays L.improves thermotolerance in Arabidopsis thaliana and rescues thermotolerance defects of the athsfa2 mutant[J]. Plant Science, 2019, 283:375-384.doi: 10.1016/j.plantsci.2019.03.002.
|
[106] |
Zhang H N, Meng X Z, Liu R, Li R, Wang Y T, Ma Z Y, Liu Z H, Duan S N, Li G L, Guo X L. Heat shock factor ZmHsf17 positively regulates phosphatidic acid phosphohydrolase ZmPAH1 and enhances maize thermotolerance[J]. Journal of Experimental Botany, 2025, 76(2):493-512.doi: 10.1093/jxb/erae406.
|
[107] |
Qin Q Q, Zhao Y J, Zhang J J, Chen L, Si W N, Jiang H Y. A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants[J]. BMC Plant Biology, 2022, 22(1):406.doi: 10.1186/s12870-022-03789-1.
|
[108] |
Lin J C, Song N, Liu D B, Liu X B, Chu W, Li J P, Chang S M, Liu Z H, Chen Y M, Yang Q, Liu X Y, Yao Y Y, Guo W L, Xin M M, Peng H R, Ni Z F, Sun Q X, Hu Z R. Histone acetyltransferase TaHAG1 interacts with TaNACL to promote heat stress tolerance in wheat[J]. Plant Biotechnology Journal, 2022, 20(9):1645-1647.doi: 10.1111/pbi.13881.
|
[109] |
|
|
Liu R, Meng X Z, Yuan S N, Li G L, Yang Y, Duan S N, Zhang H N, Guo X L. Biological characteristics and thermotolerance analysis of heat shock transcription factor TaHsfA1 subfamily genes in wheat(Triticum aestivum)[J]. Journal of Agricultural Biotechnology, 2022, 30(1):1-14.
|
[110] |
Tian X J, Wang F, Zhao Y, Lan T Y, Yu K H, Zhang L Y, Qin Z, Hu Z R, Yao Y Y, Ni Z F, Sun Q X, Rossi V, Peng H R, Xin M M. Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through OPR3 and jasmonate signalling pathway[J]. Plant Biotechnology Journal, 2020, 18(5):1109-1111.doi: 10.1111/pbi.13268.
|
[111] |
Liu Z H, Li G L, Zhang H N, Zhang Y Y, Zhang Y J, Duan S N, Sheteiwy M S A, Zhang H M, Shao H B, Guo X L. TaHsfA2-1,a new gene for thermotolerance in wheat seedlings:characterization and functional roles[J]. Journal of Plant Physiology, 2020, 246:153135.doi: 10.1016/j.jplph.2020.153135.
|
[112] |
|
|
Li M Y, Li M J, Li G L, Guo X L, Meng X Z. Thermotolerance analysis of heat shock transcription factor TaHsfA2-5 in wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(2):0181-0189.
|
[113] |
Guo X L, Yuan S N, Zhang H N, Zhang Y Y, Zhang Y J, Wang G Y, Li Y Q, Li G L. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat ( Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2-10[J]. BMC Plant Biology, 2020, 20(1):364.doi: 10.1186/s12870-020-02555-5.
|
[114] |
Li G L, Liu Z H, Zhang H N, Zhao B H, Zhang Y J, Ma Z Y, Duan S N, Meng X Z, Guo X L. Molecular characterization of a novel heat shock transcription factor gene TaHsfA2-11 and its overexpression improves thermotolerance in wheat[J]. Environmental and Experimental Botany, 2024, 218:105609.doi: 10.1016/j.envexpbot.2023.105609.
|
[115] |
Poonia A K, Mishra S K, Sirohi P, Chaudhary R, Kanwar M, Germain H, Chauhan H. Overexpression of wheat transcription factor(TaHsfA6b)provides thermotolerance in barley[J]. Planta, 2020, 252(4):53.doi: 10.1007/s00425-020-03457-4.
|
[116] |
Ma Z Y, Li M Y, Zhang H N, Zhao B H, Liu Z H, Duan S N, Meng X Z, Li G L, Guo X L. Alternative splicing of TaHsfA2-7 is involved in the improvement of thermotolerance in wheat[J]. International Journal of Molecular Sciences, 2023, 24(2):1014.doi: 10.3390/ijms24021014.
|
[117] |
Xue G P, Drenth J, Lynne McIntyre C. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat ( Triticum aestivum L.) including previously unknown Hsf targets[J]. Journal of Experimental Botany, 2015, 66(3):1025-1039.doi: 10.1093/jxb/eru462.
|
[118] |
Zhang S X, Xu Z S, Li P S, Yang L, Wei Y Q, Chen M, Li L C, Zhang G S, Ma Y Z. Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures[J]. Plant Molecular Biology Reporter, 2013, 31(3):688-697.doi: 10.1007/s11105-012-0546-z.
|
[119] |
Hu X J, Chen D D, Mclntyre C L, Dreccer M F, Zhang Z B, Drenth J, Kalaipandian S, Chang H P, Xue G P. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway[J]. Plant,Cell & Environment, 2018, 41(1):79-98.doi: 10.1111/pce.12957.
|
[120] |
Rodrigues J, Inzé D, Nelissen H, Saibo N J M. Source-sink regulation in crops under water deficit[J]. Trends in Plant Science, 2019, 24(7):652-663.doi: 10.1016/j.tplants.2019.04.005.
|
[121] |
Gururani M A, Venkatesh J, Tran L S P. Regulation of photosynthesis during abiotic stress-induced photoinhibition[J]. Molecular Plant, 2015, 8(9):1304-1320.doi: 10.1016/j.molp.2015.05.005.
|
[122] |
Wang Y, Cai S Y, Yin L L, Shi K, Xia X J, Zhou Y H, Yu J Q, Zhou J. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy[J]. Autophagy, 2015, 11(11):2033-2047.doi: 10.1080/15548627.2015.1098798.
|
[123] |
Liu A L, Zou J, Liu C F, Zhou X Y, Zhang X W, Luo G Y, Chen X B. Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice[J]. BMB Reports, 2013, 46(1):31-36.doi: 10.5483/bmbrep.2013.46.1.090.
|
[124] |
Chung E, Kim K M, Lee J H. Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max[J]. Journal of Genetics and Genomics, 2013, 40(3):127-135.doi: 10.1016/j.jgg.2012.12.002.
|
[125] |
|
|
Wei L, Wu G X, Tang X F, Wang W W, Wang X Y, Liu L J. Soybean responses to high temperatures under drought stress in the presence of an over-expressed GmHSFA1 gene[J]. Soybean Science, 2016, 35(2):257-261.
|
[126] |
Xiang J H, Ran J, Zou J, Zhou X Y, Liu A L, Zhang X W, Peng Y, Tang N, Luo G Y, Chen X B. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice[J]. Plant Cell Reports, 2013, 32(11):1795-1806.doi: 10.1007/s00299-013-1492-4.
|
[127] |
Wang J, Chen L, Long Y, Si W N, Cheng B J, Jiang H Y. A novel heat shock transcription factor (ZmHsf08) negatively regulates salt and drought stress responses in maize[J]. International Journal of Molecular Sciences, 2021, 22(21):11922.doi: 10.3390/ijms222111922.
|
[128] |
Ma H, Wang C T, Yang B, Cheng H Y, Wang Z, Mijiti A, Ren C, Qu G H, Zhang H, Ma L. CarHSFB2,a class B heat shock transcription factor,is involved in different developmental processes and various stress responses in chickpea ( Cicer arietinum L.)[J]. Plant Molecular Biology Reporter, 2016, 34(1):1-14.doi: 10.1007/s11105-015-0892-8.
|
[129] |
Liu H C, Liao H T, Charng Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis[J]. Plant,Cell & Environment, 2011, 34(5):738-751.doi: 10.1111/j.1365-3040.2011.02278.x.
|
[130] |
Hwang S M, Kim D W, Woo M S, Jeong H S, Son Y S, Akhter S, Choi G J, Bahk J D. Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions[J]. Plant,Cell & Environment, 2014, 37(5):1202-1222.doi: 10.1111/pce.12228.
|
[131] |
Li F, Zhang H R, Zhao H S, Gao T W, Song A P, Jiang J F, Chen F D, Chen S M. Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic Chrysanthemum[J]. Plant Biotechnology Journal, 2018, 16(7):1311-1321.doi: 10.1111/pbi.12871.
|
[132] |
Bi H H, Zhao Y, Li H H, Liu W X. Wheat heat shock factor TaHsfA6f increases ABA levels and enhances tolerance to multiple abiotic stresses in transgenic plants[J]. International Journal of Molecular Sciences, 2020, 21(9):3121.doi: 10.3390/ijms21093121.
|
[133] |
Hu Y, Han Y T, Wei W, Li Y J, Zhang K, Gao Y R, Zhao F L, Feng J Y. Identification,isolation,and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca[J]. Frontiers in Plant Science, 2015, 6:736.doi: 10.3389/fpls.2015.00736.
|
[134] |
Huang Y, Li M Y, Wang F, Xu Z S, Huang W, Wang G L, Ma J, Xiong A S. Heat shock factors in carrot:genome-wide identification,classification,and expression profiles response to abiotic stress[J]. Molecular Biology Reports, 2015, 42(5):893-905.doi: 10.1007/s11033-014-3826-x.
|
[135] |
Sun T T, Wang C, Liu R, Zhang Y, Wang Y C, Wang L Q. ThHSFA1 confers salt stress tolerance through modulation of reactive oxygen species scavenging by directly regulating ThWRKY4[J]. International Journal of Molecular Sciences, 2021, 22(9):5048.doi: 10.3390/ijms22095048.
|
[136] |
|
|
Yu J L, Liu C A, Fu L, Wang X, Ouyang J X. Analyzing splice variants and expression of the OsHSP40 gene in rice[J]. Acta Agriculturae Boreal-Sinica, 2021, 36(3): 1-6.
|
[137] |
Schmidt R, Schippers J H M, Welker A, Mieulet D, Guiderdoni E, Mueller-Roeber B. Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. Japonica[J]. AoB PLANTS, 2012(2012): pls011.doi: 10.1093/aobpla/pls011.
|
[138] |
Yun L, Zhang Y, Li S, Yang J Y, Wang C Y, Zheng L J, Ji L, Yang J H, Song L H, Shi Y, Zheng X, Zhang Z Y, Gao J. Phylogenetic and expression analyses of HSF gene families in wheat ( Triticum aestivum L.) and characterization of TaHSFB4-2B under abiotic stress[J]. Frontiers in Plant Science, 2023, 13:1047400.doi: 10.3389/fpls.2022.1047400.
|
[139] |
Bian X H, Li W, Niu C F, Wei W, Hu Y, Han J Q, Lu X, Tao J J, Jin M, Qin H, Zhou B, Zhang W K, Ma B, Wang G D, Yu D Y, Lai Y C, Chen S Y, Zhang J S. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis[J]. New Phytologist, 2020, 225(1):268-283.doi: 10.1111/nph.16104.
|
[140] |
刘栩铭, 李敏, 段琼, 张洪雨, 孟迪, 张丽雪, 张继星, 王晓宇. 蓖麻RcHSF基因家族鉴定与冷胁迫下的表达模式分析[J]. 华北农学报, 2020, 35(5):62-71.doi: 10.7668/hbnxb.20191312.
|
|
Liu X M, Li M, Duan Q, Zhang H Y, Meng D, Zhang L X, Zhang J X, Wang X Y. Identification of RcHSF gene family in castor and analysis of expression pattern under cold stress[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(5):62-71.
|
[141] |
Yang X L, Wang S S, Cai J, Zhang T, Yuan D D, Li Y. Genome-wide identification,phylogeny and expression analysis of Hsf gene family in Verbena bonariensis under low-temperature stress[J]. BMC Genomics, 2024, 25(1):729.doi: 10.1186/s12864-024-10612-8.
|
[142] |
Gao L, Pan L L, Shi Y T, Zeng R, Li M Z, Li Z Y, Zhang X, Zhao X M, Gong X R, Huang W, Yang X H, Lai J S, Zuo J R, Gong Z Z, Wang X Q, Jin W W, Dong Z B, Yang S H. Genetic variation in a heat shock transcription factor modulates cold tolerance in maize[J]. Molecular Plant, 2024, 17(9):1423-1438.doi: 10.1016/j.molp.2024.07.015.
|
[143] |
Si J, Fan Z Q, Wu C J, Yang Y Y, Shan W, Kuang J F, Lu W J, Wei W, Chen J Y. MaHsf24,a novel negative modulator,regulates cold tolerance in banana fruits by repressing the expression of HSPs and antioxidant enzyme genes[J]. Plant Biotechnology Journal, 2024, 22(10):2873-2886.doi: 10.1111/pbi.14410.
|
[144] |
Shim D, Hwang J U, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice[J]. The Plant Cell, 2010, 21(12):4031-4043.doi: 10.1105/tpc.109.066902.
|
[145] |
Kolmos E, Chow B Y, Pruneda-Paz J L, Kay S A. HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45):16172-16177.doi: 10.1073/pnas.1418483111.
|
[146] |
Wei Y X, Liu G Y, Chang Y L, He C Z, Shi H T. Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava[J]. Molecular Plant Pathology, 2018, 19(10):2209-2220.doi: 10.1111/mpp.12691.
|
[147] |
Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Schöffl F. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis[J]. Molecular Plant, 2009, 2(1):152-165.doi: 10.1093/mp/ssn095.
|
[148] |
Yang W, Ju Y H, Zuo L P, Shang L Y, Li X R, Li X M, Feng S Z, Ding X H, Chu Z H. OsHsfB4d binds the promoter and regulates the expression of OsHsp18.0-CI to resistant against Xanthomonas oryzae[J]. Rice, 2020, 13(1):28.doi: 10.1186/s12284-020-00388-2.
|