[1] |
Kowalska B. Management of the soil-borne fungal pathogen- Verticillium dahliae Kleb.causing vascular wilt diseases[J]. Journal of Plant Pathology, 2021, 103(4):1185-1194.doi: 10.1007/s42161-021-00937-8.
|
[2] |
|
|
Yu X X, Wang Q, Zhang X, Deng S, Lin L. Cultural,genetic and phytopathogenic characterizations of a Verticillium dahliae population from Jiangsu Province[J]. Acta Phytopathologica Sinica, 2018, 48(3):378-388.
|
[3] |
|
|
Yao C F. Functional analysis of genes related to microsclerotia development of Verticillium dahliae[D]. Nanjing: Nanjing Normal University,2023.
|
[4] |
Chen H N, Pugh B F. What do transcription factors interact with?[J]. Journal of Molecular Biology, 2021, 433(14):166883.doi: 10.1016/j.jmb.2021.166883.
|
[5] |
|
[6] |
|
|
Luo S J, Li X, Xing F G. Study on transcription factor UstR regulating aflatoxin biosynthesis and its biological function[J]. Journal of Food Safety ands Quality, 2022, 13(22):7158-7166.
|
[7] |
Harting R, Höfer A, Tran V T, Weinhold L M, Barghahn S, Schlüter R, Braus G H. The Vta1 transcriptional regulator is required for microsclerotia melanization in Verticillium dahliae[J]. Fungal Biology, 2020, 124(5):490-500.doi: 10.1016/j.funbio.2020.01.007.
|
[8] |
Tsuji G, Kenmochi Y, Takano Y, Sweigard J, Farrall L, Furusawa I, Horino O, Kubo Y. Novel fungal transcriptional activators,Cmr1p of Colletotrichum lagenarium and Pig1p of Magnaporthe grisea,contain Cys2His2 zinc finger and Zn(Ⅱ)2 Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner[J]. Molecular Microbiology, 2000, 38(5):940-954.doi: 10.1046/j.1365-2958.2000.02181.x.
|
[9] |
Galhano R, Illana A, Ryder L S, Rodríguez-Romero J, Demuez M, Badaruddin M, Martinez-Rocha A L, Soanes D M, Studholme D J, Talbot N J, Sesma A. Tpc1 is an important Zn(Ⅱ)2 Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus[J]. PLoS Pathogens, 2017, 13(7):e1006516.doi: 10.1371/journal.ppat.1006516.
|
[10] |
Jørgensen T R, Burggraaf A M, Arentshorst M, Schutze T, Lamers G, Niu J, Kwon M J, Park J, Frisvad J C, Nielsen K F, Meyer V, van den Hondel C A M J J, Dyer P S, Ram A F J. Identification of SclB,a Zn(Ⅱ)2 Cys6 transcription factor involved in sclerotium formation in Aspergillus niger[J]. Fungal Genetics and Biology, 2020,139:103377.doi: 10.1016/j.fgb.2020.103377.
|
[11] |
李维维. 北京地区黄栌枯萎病菌群体遗传多样性分析[D]. 北京: 北京林业大学, 2012.
|
|
Li W W. Genetic diversity analysis of Fusarium oxysporum in Beijing Area[D]. Beijing: Beijing Forestry University, 2012.
|
[12] |
|
|
Zhang J T. Study on Verticillium wilt of five-pointed maple[D]. Taian: Shandong Agricultural University,2019.
|
[13] |
|
[14] |
|
|
Wang D H, Zhang L H, Zhao Z B, Long Y H, Hu X P, Fan R. Functional analyses of the hypothetical protein VDAG_07165 of Verticillium dahliae[J]. Mycosystema, 2023, 42(7):1588-1600.
|
[15] |
|
|
Liu S C. Study on pathogenic mechanism of Verticillium dahliae pathogenic factor VdEPG1[D]. Wuhan: Huazhong Agricultural University,2021.
|
[16] |
|
|
Long F. Functional analysis of StSep4 gene regulating pathogenicity of maize leaf blight[D]. Baoding: Hebei Agricultural University,2021.
|
[17] |
赵英杰. 弱毒黄萎病菌Vn-1诱导向日葵抗黄萎病的机制研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
|
|
Zhao Y J. Study on the mechanism of sunflower resistance to Verticillium wilt induced by Virulent verticillium wilt Vn-1[D]. Hohhot: Inner Mongolia Agricultural University, 2018.
|
[18] |
张文琦. 大丽轮枝菌Fungal_trans转录因子VdFTF1调控致病性功能研究[D]. 北京: 中国农业科学院, 2017.
|
|
Zhang W Q. Study on the regulation of pathogenic function by Fungal_trans transcription factor VdFTF1 of Verticillium dahliae[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
|
[19] |
Singh B K, Delgado-Baquerizo M, Egidi E, Guirado E, Leach J E, Liu H W, Trivedi P. Climate change impacts on plant pathogens,food security and paths forward[J]. Nature Reviews Microbiology, 2023, 21(10):640-656.doi: 10.1038/s41579-023-00900-7.
|
[20] |
Tang B Z, Yan X, Ryder L S, Bautista M J A, Cruz-Mireles N, Soanes D M, Molinari C, Foster A J, Talbot N J. Rgs1 is a regulator of effector gene expression during plant infection by the rice blast fungus Magnaporthe oryzae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(12):e2301358120.doi: 10.1073/pnas.2301358120.
|
[21] |
Sood M, Kapoor D, Kumar V, Kalia N, Bhardwaj R, Sidhu G P S, Sharma A. Mechanisms of plant defense under pathogen stress:a review[J]. Current Protein & Peptide Science, 2021, 22(5):376-395.doi: 10.2174/1389203722666210125122827.
|
[22] |
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials:natural products against bacterial membranes[J]. Phytotherapy Research, 2022, 36(1):33-52.doi: 10.1002/ptr.7275.
|
[23] |
Peng Y J, Chen B. Role of cell membrane homeostasis in the pathogenicity of pathogenic filamentous fungi[J]. Virulence, 2024, 15(1):2299183.doi: 10.1080/21505594.2023.2299183.
|
[24] |
|
|
Wang Q. Study on the function of transcription factor Moswi6 of Magnaporthe grisea[D]. Nanjing: Nanjing Agricultural University,2010.
|
[25] |
|
|
Yue J N. Functional analysis and potential application of histone methyltransferase MoKmt3 from Magnaporthe grisea[D]. Hangzhou: Zhejiang University,2021.
|
[26] |
Liu Z H, Raj S, van Rhijn N, Fraczek M, Michel J P, Sismeiro O, Legendre R, Varet H, Fontaine T, Bromley M, Latgé J P. Functional genomic and biochemical analysis reveals pleiotropic effect of Congo red on Aspergillus fumigatus[J]. mBio, 2021, 12(3):e00863-e00821.doi: 10.1128/mBio.00863-21.
|