[1] |
|
|
Hu H B, Li F, Ding S R, Liu Y C, Wei Y S, Li W, Zhou X C. Effects of race 3 of soybean cyst nematode on the growth and development of soybean plants[J]. Soybean Science & Technology, 2022(4):12-17.
|
[2] |
|
|
Zhang H P, Chen Y, Yan K. Selection of SSR markers for SCN4 resistance and identification of excellent resistant germplasm[J]. Soybean Science, 2020, 39(1):1-11.
|
[3] |
|
|
Yuan C P, Qi G X, Li Y Q, Liu X D, Wang Y N, Wang Y M, Zhao H K, Dong Y S. QTL mapping for resistance to soybean cyst nematode in wild soybean[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(6):887-893.
|
[4] |
Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. Green revolution' genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400(6741):256-261.doi: 10.1038/22307.
|
[5] |
Peng J R, Carol P, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. Genes & Development, 1997, 11(23):3194-3205.doi: 10.1101/gad.11.23.3194.
URL
|
[6] |
Silverstone A L, Ciampaglio C N, Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway[J]. The Plant Cell, 1998, 10(2):155-169.doi: 10.1105/tpc.10.2.155.
URL
|
[7] |
Di Laurenzio L, Wysocka-Diller J, Malamy J E, Pysh L, Helariutta Y, Freshour G, Hahn M G, Feldmann K A, Benfey P N. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root[J]. Cell, 1996, 86(3):423-433.doi: 10.1016/s0092-8674(00)80115-4.
|
[8] |
Hofmann N R. A structure for plant-specific transcription factors:The GRAS domain revealed[J]. The Plant Cell, 2016, 28(5):993-994.doi: 10.1105/tpc.16.00309.
pmid: 27095838
|
[9] |
Fu X D, Richards D E, Ait-Ali T, Hynes L W, Ougham H, Peng J R, Harberd N P. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor[J]. The Plant Cell, 2002, 14(12):3191-3200.doi: 10.1105/tpc.006197.
URL
|
[10] |
Torres-Galea P, Huang L F, Chua N H, Bolle C. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling,but can also modulate phytochrome A responses[J]. Molecular Genetics and Genomics, 2006, 276(1):13-30.doi: 10.1007/s00438-006-0123-y.
pmid: 16680434
|
[11] |
Wysocka-Diller J W, Helariutta Y, Fukaki H, Malamy J E, Benfey P N. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot[J]. Development (Cambridge,England), 2000, 127(3):595-603.doi: 10.1242/dev.127.3.595.
pmid: 10631180
|
[12] |
Heo J O, Chang K S, Kim I A, Lee M H, Lee S A, Song S K, Lee M M, Lim J. Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(5):2166-2171.doi: 10.1073/pnas.1012215108.
|
[13] |
Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K. The Lateral suppressor( Ls) gene of tomato encodes a new member of the VHIID protein family[J]. Journal of Medical Virology, 1999, 96(1):290-295.doi: 10.1073/pnas.96.1.290.
|
[14] |
Ma H S, Liang D, Shuai P, Xia X L, Yin W L. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010, 61(14):4011-4019.doi: 10.1093/jxb/erq217.
URL
|
[15] |
Hendelman A, Kravchik M, Stav R, Frank W, Arazi T. Tomato HAIRY MERISTEM genes are involved in meristem maintenance and compound leaf morphogenesis[J]. Journal of Experimental Botany, 2016, 67(21):6187-6200.doi: 10.1093/jxb/erw388.
pmid: 27811085
|
[16] |
|
|
Yin M, Yang D W, Tang H J, Pan G, Li D F, Zhao L N, Huang S Q. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.)[J]. Acta Agronomica Sinica, 2021, 47(6):1054-1069.
doi: 10.3724/SP.J.1006.2021.04078
URL
|
[17] |
Xu K, Chen S J, Li T F, Ma X S, Liang X H, Ding X F, Liu H Y, Luo L J. OsGRAS23,a rice GRAS transcription factor gene,is involved in drought stress response through regulating expression of stress-responsive genes[J]. BMC Plant Biology, 2015, 15:141.doi: 10.1186/s12870-015-0532-3.
URL
|
[18] |
Liu Y D, Wen L, Shi Y, Su D D, Lu W, Cheng Y L, Li Z G. Stress-responsive tomato gene SlGRAS4 function in drought stress and abscisic acid signaling[J]. Plant Science, 2021, 304:110804.doi: 10.1016/j.plantsci.2020.110804.
URL
|
[19] |
Riggs R D, Schmitt D P. Complete characterization of the race scheme for heterodera glycines[J]. Journal of Nematology, 1988, 20(3):392-395.
pmid: 19290228
|
[20] |
|
[21] |
|
|
Liu W, Zhang Y W, Wang Y B, Li W, Xu R, Wang C J, Zhang L F. Screening of soybean drought responsive GRAS genes and bioinformatics and adversity stress expression analysis on GmGRAS27[J]. Soybean Science, 2022, 41(1):36-42.
|
[22] |
|
|
Yang P Y, Liang H K, Yin C P, Cui J H, Chang J H. Genome-wide identification of sorghum GRAS gene family and its response to uniconazole treatment[J]. Journal of Agricultural University of Hebei, 2021, 44(5):1-13.
|
[23] |
|
|
Zhang B, Chen L J, Li Q H, Tang M S. Identification of gene of GRAS transcription factor family in cultivated soybean(Glycine max L.) and expression pattern analysis under salt stress[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(2):296-309.
|