[1] |
Schukken Y H, Hertl J, Bar D, Bennett G J, González R N, Rauch B J, Santisteban C, Schulte H F, Tauer L, Welcome F L, Gröhn Y T. Effects of repeated gram-positive and gram-negative clinical mastitis episodes on milk yield loss in Holstein dairy cows[J]. Journal of Dairy Science, 2009, 92(7):3091-3105.doi: 10.3168/jds.2008-1557.
pmid: 19528587
|
[2] |
Romero J, Benavides E, Meza C. Assessing financial impacts of subclinical mastitis on Colombian dairy farms[J]. Frontiers in Veterinary Science, 2018, 5:273.doi: 10.3389/fvets.2018.00273.
pmid: 30542654
|
[3] |
Zadoks R N, Middleton J R, McDougall S, Katholm J, Schukken Y H. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans[J]. Journal of Mammary Gland Biology and Neoplasia, 2011, 16(4):357-372.doi: 10.1007/s10911-011-9236-y.
pmid: 21968538
|
[4] |
Gao J, Barkema H W, Zhang L M, Liu G, Deng Z J, Cai L J, Shan R X, Zhang S Y, Zou J Q, Kastelic J P, Han B. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms[J]. Journal of Dairy Science, 2017, 100(6):4797-4806.doi: 10.3168/jds.2016-12334.
pmid: 28434736
|
[5] |
Nair L, Chung H, Basu U. Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery[J]. Nature Reviews Molecular Cell Biology, 2020, 21(3):123-136.doi: 10.1038/s41580-019-0209-0.
pmid: 32020081
|
[6] |
Wang W L, Min L, Qiu X Y, Wu X M, Liu C Y, Ma J X, Zhang D Y, Zhu L Y. Biological function of long non-coding RNA(LncRNA)xist[J]. Frontiers in Cell and Developmental Biology, 2021, 9:645647.doi: 10.3389/fcell.2021.645647.
|
[7] |
pmid: 21925379
|
[8] |
Ma T T, Li H W, Liu H, Peng Y L, Lin T, Deng Z Y, Jia N, Chen Z Q, Wang P. Neat1 promotes acute kidney injury to chronic kidney disease by facilitating tubular epithelial cells apoptosis via sequestering miR-129-5p[J]. Molecular Therapy, 2022, 30(10):3313-3332.doi: 10.1016/j.ymthe.2022.05.019.
|
[9] |
Liu M, Li W X, Song F X, Zhang L, Sun X J. Silencing of lncRNA MIAT alleviates LPS-induced pneumonia via regulating miR-147a/NKAP/NF-κB axis[J]. Aging, 2020, 13(2):2506-2518.doi: 10.18632/aging.202284.
|
[10] |
Tang S A, Cao Y M, Cai Z P, Nie X Y, Ruan J Z, Zhou Z Q, Ruan G F, Zhu Z H, Han W Y, Ding C H. The lncRNA PILA promotes NF-κB signaling in osteoarthritis by stimulating the activity of the protein arginine methyltransferase PRMT1[J]. Science Signaling, 2022, 15(735):eabm6265.doi: 10.1126/scisignal.abm6265.
|
[11] |
Wang H, Wang X X, Li X R, Wang Q W, Qing S Z, Zhang Y, Gao M Q. A novel long non-coding RNA regulates the immune response in MAC-T cells and contributes to bovine mastitis[J]. The FEBS Journal, 2019, 286(9):1780-1795.doi: 10.1111/febs.14783.
|
[12] |
Lin C J, Zhu Y F, Hao Z Y, Xu H J, Li T, Yang J H, Chen X, Chen Y Y, Guo A Z, Hu C M. Genome-wide analysis of LncRNA in bovine mammary epithelial cell injuries induced by Escherichia coli and Staphylococcus aureus[J]. International Journal of Molecular Sciences, 2021, 22(18):9719.doi: 10.3390/ijms22189719.
|
[13] |
Wang J P, Hu Q C, Yang J, Luoreng Z M, Wang X P, Ma Y, Wei D W. Differential expression profiles of lncRNA following LPS-induced inflammation in bovine mammary epithelial cells[J]. Frontiers in Veterinary Science, 2021, 8:758488.doi: 10.3389/fvets.2021.758488.
|
[14] |
Wang X X, Wang H, Zhang R Q, Li D, Gao M Q. LRRC75A antisense lncRNA1 knockout attenuates inflammatory responses of bovine mammary epithelial cells[J]. International Journal of Biological Sciences, 2020, 16(2):251-263.doi: 10.7150/ijbs.38214.
pmid: 31929753
|
[15] |
Ma M R, Pei Y F, Wang X X, Feng J X, Zhang Y, Gao M Q. LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-κB/NLRP3 inflammasome pathway[J]. Cell Proliferation, 2019, 52(1):e12525.doi: 10.1111/cpr.12525.
|
[16] |
Jiao P, Wang J P, Yang J, Wang X P, Luoreng Z M. Bta-miR-223 targeting the RHOB gene in dairy cows attenuates LPS-induced inflammatory responses in mammary epithelial cells[J]. Cells, 2022, 11(19):3144.doi: 10.3390/cells11193144.
|
[17] |
Günther J, Esch K, Poschadel N, Petzl W, Zerbe H, Mitterhuemer S, Blum H, Seyfert H M. Comparative kinetics of Escherichia coli-and Staphylococcus aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S.aureus elicits a delayed response dominated by interleukin-6(IL-6)but not by IL-1A or tumor necrosis factor alpha[J]. Infection and Immunity, 2011, 79(2):695-707.doi: 10.1128/IAI.01071-10.
|
[18] |
Wu T Y, Wang C, Ding L Y, Shen Y Z, Cui H H, Wang M Z, Wang H R. Arginine relieves the inflammatory response and enhances the casein expression in bovine mammary epithelial cells induced by lipopolysaccharide[J]. Mediators of Inflammation, 2016, 2016:9618795.doi: 10.1155/2016/9618795.
|
[19] |
Kempf F, Slugocki C, Blum S E, Leitner G, Germon P. Genomic comparative study of bovine mastitis Escherichia coli[J]. PLoS One, 2016, 11(1):e0147954.doi: 10.1371/journal.pone.0147954.
|
[20] |
Yang C, Wang M, Tang X W, Yang H S, Li F N, Wang Y C, Li J Z, Yin Y L. Effect of dietary amylose/amylopectin ratio on intestinal health and cecal microbes' profiles of weaned pigs undergoing feed transition or challenged with Escherichia coli lipopolysaccharide[J]. Frontiers in Microbiology, 2021, 12:693839.doi: 10.3389/fmicb.2021.693839.
|
[21] |
Fu Y H, Zhou E S, Liu Z C, Li F Y, Liang D J, Liu B, Song X J, Zhao F Y, Fen X S, Li D P, Cao Y G, Zhang X C, Zhang N S, Yang Z T. Staphylococcus aureus and Escherichia coli elicit different innate immune responses from bovine mammary epithelial cells[J]. Veterinary Immunology and Immunopathology, 2013, 155(4):245-252.doi: 10.1016/j.vetimm.2013.08.003.
|
[22] |
Fusco R, Cordaro M, Siracusa R, Peritore A F, D'Amico R, Licata P, Crupi R, Gugliandolo E. Effects of hydroxytyrosol against lipopolysaccharide-induced inflammation and oxidative stress in bovine mammary epithelial cells:a natural therapeutic tool for bovine mastitis[J]. Antioxidants, 2020, 9(8):693.doi: 10.3390/antiox9080693.
|
[23] |
Zhang X J, Jia F, Ma W W, Li X Q, Zhou X Z. DAD3 targets ACE2 to inhibit the MAPK and NF-κB signalling pathways and protect against LPS-induced inflammation in bovine mammary epithelial cells[J]. Veterinary Research, 2022, 53(1):104.doi: 10.1186/s13567-022-01122-0.
pmid: 36482404
|
[24] |
Gil N, Ulitsky I. Regulation of gene expression by Cis-acting long non-coding RNAs[J]. Nature Reviews Genetics, 2020, 21(2):102-117.doi: 10.1038/s41576-019-0184-5.
|
[25] |
Joung J, Engreitz J M, Konermann S, Abudayyeh O O, Verdine V K, Aguet F, Gootenberg J S, Sanjana N E, Wright J B, Fulco C P, Tseng Y Y, Yoon C H, Boehm J S, Lander E S, Zhang F. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood[J]. Nature, 2017, 548(7667):343-346.doi: 10.1038/nature23451.
|
[26] |
Sun M, Kraus W L. From discovery to function:the expanding roles of long noncoding RNAs in physiology and disease[J]. Endocrine Reviews, 2015, 36(1):25-64.doi: 10.1210/er.2014-1034.
|
[27] |
Li B, Xi P P, Wang Z L, Han X G, Xu Y Y, Zhang Y S, Miao J F. PI3K/Akt/mTOR signaling pathway participates in Streptococcus uberis-induced inflammation in mammary epithelial cells in concert with the classical TLRs/NF-κB pathway[J]. Veterinary Microbiology, 2018, 227:103-111.doi: 10.1016/j.vetmic.2018.10.031.
|
[28] |
Khan M Z, Khan A, Xiao J X, Ma Y L, Ma J Y, Gao J, Cao Z J. Role of the JAK-STAT pathway in bovine mastitis and milk production[J]. Animals, 2020, 10(11):2107.doi: 10.3390/ani10112107.
|
[29] |
Marks Z R C, Campbell N, DeWeerd N A, Lim S S, Gearing L J, Bourke N M, Hertzog P J. Properties and functions of the novel type I interferon epsilon[J]. Seminars in Immunology, 2019, 43:101328.doi: 10.1016/j.smim.2019.101328.
|
[30] |
Xin P, Xu X Y, Deng C J, Liu S, Wang Y Z, Zhou X G, Ma H X, Wei D H, Sun S Q. The role of JAK/STAT signaling pathway and its inhibitors in diseases[J]. International Immunopharmacology, 2020, 80:106210.doi: 10.1016/j.intimp.2020.106210.
|
[31] |
Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz D M. JAK-STAT signaling as a target for inflammatory and autoimmune diseases:current and future prospects[J]. Drugs, 2017, 77(5):521-546.doi: 10.1007/s40265-017-0701-9.
|
[32] |
Han H S, Shin J S, Lee S B, Park J C, Lee K T. Cirsimarin,a flavone glucoside from the aerial part of Cirsium japonicum var. ussuriense(Regel)Kitam.ex Ohwi,suppresses the JAK/STAT and IRF-3 signaling pathway in LPS-stimulated RAW 264.7 macrophages[J]. Chemico-Biological Interactions, 2018, 293:38-47.doi: 10.1016/j.cbi.2018.07.024.
|
[33] |
He Y, Dan Y J, Gao X R, Huang L, Lü H B, Chen J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway[J]. American Journal of Physiology Endocrinology and Metabolism, 2021, 320(3):E598-E608.doi: 10.1152/ajpendo.00089.2020.
|
[34] |
Cai R, Sun Y M, Qimuge N, Wang G Q, Wang Y Q, Chu G Y, Yu T Y, Yang G S, Pang W J. Adiponectin AS lncRNA inhibits adipogenesis by transferring from nucleus to cytoplasm and attenuating adiponectin mRNA translation[J]. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2018, 1863(4):420-432.doi: 10.1016/j.bbalip.2018.01.005.
|
[35] |
Sun Q Y, Hao Q Y, Prasanth K V. Nuclear long noncoding RNAs:key regulators of gene expression[J]. Trends in Genetics, 2018, 34(2):142-157.doi: 10.1016/j.tig.2017.11.005.
|
[36] |
Zhang X L, Cheng Z X, Wang L X, Jiao B L, Yang H, Wang X. MiR-21-3p centric regulatory network in dairy cow mammary epithelial cell proliferation[J]. Journal of Agricultural and Food Chemistry, 2019, 67(40):11137-11147.doi: 10.1021/acs.jafc.9b04059.
pmid: 31532202
|
[37] |
Liu L H, Sun B, Zhang F, Zhong Z Y, Zhang Y L, Li F, Zhang T T, Khatib H, Wang X. lncRNA MPFAST promotes proliferation and fatty acid synthesis of bovine mammary epithelial cell by sponging miR-103 regulating PI3K-AKT pathway[J]. Journal of Agricultural and Food Chemistry, 2022, 70(38):12004-12013.doi: 10.1021/acs.jafc.2c04789.
pmid: 36112519
|
[38] |
Chen Z, Liang Y, Lu Q Y, Nazar M, Mao Y J, Aboragah A, Yang Z P, Loor J J. Cadmium promotes apoptosis and inflammation via the circ08409/miR-133a/TGFB2 axis in bovine mammary epithelial cells and mouse mammary gland[J]. Ecotoxicology and Environmental Safety, 2021, 222:112477.doi: 10.1016/j.ecoenv.2021.112477.
|
[39] |
Shandilya U K, Wu X, McAllister C, Mutharia L, Karrow N A. Role of toll-like receptor 4 in Mycobacterium avium subsp.paratuberculosis infection of bovine mammary epithelial(MAC-T)cells in vitro[J]. Microbiology Spectrum, 2023, 11(2):e0439322.doi: 10.1128/spectrum.04393-22.
|
[40] |
|
|
Hu Q C. Study on the role of miR-375 in inflammatory reaction of mammary epithelial cells in dairy cows[D]. Yinchuan: Ningxia University, 2021.
|
[41] |
Fan Y L, Arbab A A I, Zhang H M, Yang Y, Lu X B, Han Z Y, Yang Z P. MicroRNA-193a-5p regulates the synthesis of polyunsaturated fatty acids by targeting fatty acid desaturase 1(FADS1)in bovine mammary epithelial cells[J]. Biomolecules, 2021, 11(2):157.doi: 10.3390/biom11020157.
|