[1] |
赵爽, 葛朝红, 石鹤飞, 闵卓, 王广鹏, 李伟明. 板栗WRKY基因家族鉴定及其在干旱胁迫下的表达分析[J]. 华北农学报, 2024, 39(1):72-82.doi: 10.7668/hbnxb.20194000.
|
|
Zhao S, Ge C H, Shi H F, Min Z, Wang G P, Li W M. Identification and expression analysis of the chestnut WRKY gene family under drought stress[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1):72-82.
doi: 10.7668/hbnxb.20194000
|
[2] |
|
|
Liang X M, Qin S S, Wei F, Wei G L, Lin Q, Liang Y. Research progress on the function of transcription factors in plant drought stress[J]. Biotic Resources, 2024, 46(3):220-230.
|
[3] |
Li W X, Pang S Y, Lu Z G, Jin B. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants[J]. Plants, 2020, 9(11):1515.doi: 10.3390/plants9111515.
|
[4] |
Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5):247-258.doi: 10.1016/j.tplants.2010.02.006.
pmid: 20304701
|
[5] |
Jiang J J, Ma S H, Ye N H, Jiang M, Cao J S, Zhang J H. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2):86-101.doi: 10.1111/jipb.12513.
|
[6] |
Huang H, Zhao W C, Li C H, Qiao H, Song S S, Yang R, Sun L L, Ma J L, Ma X C, Wang S H. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato[J]. Plant Physiology, 2022, 190(1):828-842.doi: 10.1093/plphys/kiac275.
pmid: 35689622
|
[7] |
Xie W Y, Ke Y G, Cao J B, Wang S P, Yuan M. Knock out of transcription factor WRKY53 thickens sclerenchyma cell walls,confers bacterial blight resistance[J]. Plant Physiology, 2021, 187(3):1746-1761.doi: 10.1093/plphys/kiab400.
|
[8] |
|
|
Li H, Kang Z P, Qiu C S, Dai Z G, Qiu H J. Identification of kenaf WRKY gene family and its expression analysis under salt stress[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(4):71-81.
doi: 10.7668/hbnxb.20192961
|
[9] |
温海洋, 朱紫童, 湛佳伟, 李长, 武博寒, 杨永霞, 张松涛, 贾宏昉. 烟草转录因子 NtWRKY11基因克隆、亚细胞定位及表达模式分析[J]. 华北农学报, 2024, 39(3):60-66.doi: 10.7668/hbnxb.20194660.
|
|
Wen H Y, Zhu Z T, Zhan J W, Li C, Wu B H, Yang Y X, Zhang S T, Jia H F. Cloning,subcellular localization and expression pattern analysis of tobacco transcription factor NtWRKY11 gene[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(3):60-66.
|
[10] |
Yu Y A, He L Y, Wu Y X. Wheat WRKY transcription factor TaWRKY24 confers drought and salt tolerance in transgenic plants[J]. Plant Physiology and Biochemistry, 2023, 205:108137.doi: 10.1016/j.plaphy.2023.108137.
|
[11] |
Ge M M, Tang Y, Guan Y J, Lyu M C, Zhou C, Ma H L, Lü J Y. TaWRKY31,a novel WRKY transcription factor in wheat,participates in regulation of plant drought stress tolerance[J]. BMC Plant Biology, 2024, 24(1):27.doi: 10.1186/s12870-023-04709-7.
|
[12] |
|
|
Chen H J, Yan Z Z, Qi X Y, Chen S S, Feng J, Jin Y Y, Miao Y H, Deng Y M. Evaluation of cold tolerance and screening of main indexes of different cultivars of Hydrangea macrophylla[J]. Journal of Plant Resources and Environment, 2024, 33(2):41-49.
|
[13] |
|
|
Mao J D, Chen H J, Qi X Y, Chen S S, Feng J, Jin Y Y, Deng Y M, Zhang H. Effects of steel slag mixed substrate on rooting of Hydrangea macrophylla cuttings[J]. Chinese Journal of Applied Ecology, 2024, 35(8):2150-2158.
|
[14] |
王晓玥, 陈双双, 齐香玉, 冯景, 陈慧杰, 孙明, 邓衍明. 绣球花铝转运蛋白HmALMT11的生物信息学及其表达特性分析[J]. 华北农学报, 2024, 39(4):94-101.doi: 10.7668/hbnxb.20194790.
|
|
Wang X Y, Chen S S, Qi X Y, Feng J, Chen H J, Sun M, Deng Y M. Bioinformatics analysis and expression profiling of the aluminum transporter HmALMT11 in Hydrangea macrophylla[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(4):94-101.
|
[15] |
Chen S S, Qi X Y, Feng J, Chen H J, Qin Z Y, Wang H D, Deng Y M. Biochemistry and transcriptome analyses reveal key genes and pathways involved in high-aluminum stress response and tolerance in hydrangea sepals[J]. Plant Physiology and Biochemistry, 2022, 185:268-278.doi: 10.1016/j.plaphy.2022.06.008.
pmid: 35724621
|
[16] |
|
|
Deng Y M, Han Y, Qi X Y, Sun X B, Jia X P, Chen S S. Analysis on germplasm resources of species in Hydrangea Linn.and comparisons on their flower color variability and resistance to leaf spot disease[J]. Journal of Plant Resources and Environment, 2018, 27(4):90-100.
|
[17] |
|
|
Chen H J, Deng Y M, Qi X Y, Chen S S, Feng J, Han Y, Wang H D, Qin Z Y. Identification of pathogen from hydrangea leaf spot disease and its biological characteristics[J]. Jiangsu Agricultural Sciences, 2022, 50(7):106-111.
|
[18] |
Zhu J Z, Chen J, Wang Y, Li C X, Zhang C J, He A G, Zhong J. Leaf spot of Hydrangea macrophylla caused by Corynespora cassiicola in China[J]. Canadian Journal of Plant Pathology, 2020, 42(1):125-132.doi: 10.1080/07060661.2019.1632934.
|
[19] |
Wu X B, Alexander L W. Genome-wide association studies for inflorescence type and remontancy in Hydrangea macrophylla[J]. Horticulture Research, 2020, 7:27.doi: 10.1038/s41438-020-0255-y.
|
[20] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.doi: 10.1016/j.molp.2020.06.009.
|
[21] |
Crooks G E, Hon G, Chandonia J M, Brenner S E. WebLogo:a sequence logo generator[J]. Genome Research, 2004, 14(6):1188-1190.doi: 10.1101/gr.849004.
pmid: 15173120
|
[22] |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729.doi: 10.1093/molbev/mst197.
|
[23] |
陈双双, 齐香玉, 冯景, 陈慧杰, 王华娣, 秦紫艺, 邓衍明. 铝处理下绣球实时荧光定量PCR内参基因筛选及验证[J]. 华北农学报, 2021, 36(2):9-18.doi: 10.7668/hbnxb.20191716.
|
|
Chen S S, Qi X Y, Feng J, Chen H J, Wang H D, Qin Z Y, Deng Y M. Selection and validation of reference genes for qRT-PCR gene expression analysis in Hydrangea macrophylla under aluminum treatment[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2):9-18.
|
[24] |
Wang Q S, Wang M H, Zhang X Z, Hao B J, Kaushik S K, Pan Y C. WRKY gene family evolution in Arabidopsis thaliana[J]. Genetica, 2011, 139(8):973-983.doi: 10.1007/s10709-011-9599-4.
|
[25] |
Chen L G, Zhang L P, Xiang S Y, Chen Y L, Zhang H Y, Yu D Q. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens[J]. Journal of Experimental Botany, 2021, 72(4):1473-1489.doi: 10.1093/jxb/eraa529.
pmid: 33165597
|
[26] |
Wani S H, Anand S, Singh B, Bohra A, Joshi R. WRKY transcription factors and plant defense responses:latest discoveries and future prospects[J]. Plant Cell Reports, 2021, 40(7):1071-1085.doi: 10.1007/s00299-021-02691-8.
|
[27] |
Kim K C, Fan B F, Chen Z X. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae[J]. Plant Physiology, 2006, 142(3):1180-1192.doi: 10.1104/pp.106.082487.
|
[28] |
Liu X F, Song Y Z, Xing F Y, Wang N, Wen F J, Zhu C X. GhWRKY25,a group I WRKY gene from cotton,confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana[J]. Protoplasma, 2016, 253(5):1265-1281.doi: 10.1007/s00709-015-0885-3.
|
[29] |
Wang H H, Meng J, Peng X X, Tang X K, Zhou P L, Xiang J H, Deng X B. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani,the causing agent of rice sheath blight[J]. Plant Molecular Biology, 2015, 89(1/2):157-171.doi: 10.1007/s11103-015-0360-8.
|
[30] |
Liu X Q, Bai X Q, Qian Q, Wang X J, Chen M S, Chu C C. OsWRKY03,a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1[J]. Cell Research, 2005, 15(8):593-603.doi: 10.1038/sj.cr.7290329.
|
[31] |
Han M, Ryu H S, Kim C Y, Park D S, Ahn Y K, Jeon J S. OsWRKY30 is a transcription activator that enhances rice resistance to the Xanthomonas oryzae pathovar oryzae[J]. Journal of Plant Biology, 2013, 56(4):258-265.doi: 10.1007/s12374-013-0160-0.
|
[32] |
Chujo T, Miyamoto K, Ogawa S, Masuda Y, Shimizu T, Kishi-Kaboshi M, Takahashi A, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice[J]. PLoS One, 2014, 9(6):e98737.doi: 10.1371/journal.pone.0098737.
|
[33] |
Yang B, Jiang Y Q, Rahman M H, Deyholos M K, Kav N N V. Identification and expression analysis of WRKY transcription factor genes in canola( Brassica napus L.)in response to fungal pathogens and hormone treatments[J]. BMC Plant Biology, 2009, 9(1):68.doi: 10.1186/1471-2229-9-68.
|
[34] |
|
[35] |
Guo R R, Qiao H B, Zhao J, Wang X H, Tu M X, Guo C L, Wan R, Li Z, Wang X P. The grape VlWRKY3 gene promotes abiotic and biotic stress tolerance in transgenic Arabidopsis thaliana[J]. Frontiers in Plant Science, 2018, 9:545.doi: 10.3389/fpls.2018.00545.
|
[36] |
Merz P R, Moser T, Höll J, Kortekamp A, Buchholz G, Zyprian E, Bogs J. The transcription factor VvWRKY33 is involved in the regulation of grapevine( Vitis vinifera)defense against the oomycete pathogen Plasmopara viticola[J]. Physiologia Plantarum, 2015, 153(3):365-380.doi: 10.1111/ppl.12251.
|
[37] |
Liu W D, Yan C H, Li R M, Chen G Y, Wang X Q, Wen Y Q, Zhang C H, Wang X P, Xu Y, Wang Y J. VqMAPK3/VqMAPK6, VqWRKY33,and VqNSTS3 constitute a regulatory node in enhancing resistance to powdery mildew in grapevine[J]. Horticulture Research, 2023, 10(7):uhad116.doi: 10.1093/hr/uhad116.
|
[38] |
Yu D S, Fan R C, Zhang L, Xue P Y, Liao L B, Hu M Z, Cheng Y J, Li J E, Qi T, Jing S J, Wang Q Y, Bhatt A, Shen Q H. HvWRKY2 acts as an immunity suppressor and targets HvCEBiP to regulate powdery mildew resistance in barley[J]. The Crop Journal, 2023, 11(1):99-107.doi: 10.1016/j.cj.2022.05.010.
|
[39] |
Adachi H, Ishihama N, Nakano T, Yoshioka M, Yoshioka H. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea[J]. Plant Signaling & Behavior, 2016, 11(6):e1183085.doi: 10.1080/15592324.2016.1183085.
|
[40] |
Sun S S, Ren Y X, Wang D X, Farooq T, He Z F, Zhang C, Li S F, Yang X L, Zhou X P. A group I WRKY transcription factor regulates mulberry mosaic dwarf-associated virus-triggered cell death in Nicotiana benthamiana[J]. Molecular Plant Pathology, 2022, 23(2):237-253.doi: 10.1111/mpp.13156.
|
[41] |
Oh S K, Baek K H, Park J M, Yi S Y, Yu S H, Kamoun S, Choi D. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense[J]. New Phytologist, 2008, 177(4):977-989.doi: 10.1111/j.1469-8137.2007.02310.x.
|
[42] |
Liu X T, Li D D, Zhang S Y, Xu Y L, Zhang Z. Genome-wide characterization of the rose( Rosa chinensis)WRKY family and role of RcWRKY41 in gray mold resistance[J]. BMC Plant Biology, 2019, 19(1):522.doi: 10.1186/s12870-019-2139-6.
|
[43] |
|
|
Ding X W, Tian T, Chen J W, Chen J Y, Wang Z Y, Zou H D, Huang L F. Genome-wide characterization of WRKY gene family and the expression pattern during stem rot disease inoculation in sweet potato[J]. Jiangsu Agricultural Sciences, 2024, 52(21): 25-39.
|
[44] |
Dou L L, Zhang X H, Pang C Y, Song M Z, Wei H L, Fan S L, Yu S X. Genome-wide analysis of the WRKY gene family in cotton[J]. Molecular Genetics and Genomics, 2014, 289(6):1103-1121.doi: 10.1007/s00438-014-0872-y.
pmid: 24942461
|
[45] |
He H S, Dong Q, Shao Y H, Jiang H Y, Zhu S W, Cheng B J, Xiang Y. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa[J]. Plant Cell Reports, 2012, 31(7):1199-1217.doi: 10.1007/s00299-012-1241-0.
|
[46] |
Ye H, Qiao L Y, Guo H Y, Guo L P, Ren F, Bai J F, Wang Y K. Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-a is referred to drought and salt resistances[J]. Frontiers in Plant Science, 2021, 12:663118.doi: 10.3389/fpls.2021.663118.
|