[1] |
|
|
Li X X, Xu R N, Liao H. Contributions of symbiotic nitrogen fixation in soybean to reducing fertilization while increasing efficiency in agriculture[J]. Soybean Science, 2016, 35(4):531-535.
|
[2] |
刘玉颖, 沈丰, 杨劲峰, 蔡芳芳, 付时丰, 罗培宇, 李娜, 戴健, 韩晓日. 长期施肥棕壤大豆产量的演变及土壤氮素分布特征[J]. 中国农业科学, 2023, 56(10):1920-1934.doi: 10.3864/j.issn.0578-1752.2023.10.009.
|
|
Liu Y Y, Shen F, Yang J F, Cai F F, Fu S F, Luo P Y, Li N, Dai J, Han X R. Variation characteristics of soybean yield and soil nitrogen distribution in brown soil under long-term fertilization[J]. Scientia Agricultura Sinica, 2023, 56(10):1920-1934.
doi: 10.3864/j.issn.0578-1752.2023.10.009
|
[3] |
Hartman G L, West E D, Herman T K. Crops that feed the World 2.Soybean-worldwide production,use,and constraints caused by pathogens and pests[J]. Food Security, 2011, 3(1):5-17.doi: 10.1007/s12571-010-0108-x.
|
[4] |
|
|
Zhang G W, Chen Q H, Ning X Q, Zeng Z Y. Effect of soybean isoflavones on osteoporosis rat models[J]. Chinese Journal of Microecology, 2020, 32(12):1397-1403.
|
[5] |
|
|
Shi Q, Li B. Research progress and prospect of soybean isoflavones[J]. Soybean Science & Technology, 2018(5):37-39.
|
[6] |
Ke X L, Xiao H, Peng Y Q, Wang J, Lü Q, Wang X L. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state[J]. Science, 2022, 378(6623):971-977.doi: 10.1126/science.abq8591.
pmid: 36454840
|
[7] |
|
|
Xie J G, Wang S M, Jiang H W, Wang M L, Li G, Zhang Y F, Liu J L, Zheng Y H. Breeding research of a new soybean variety Jiyu 2517 with high protein content and high yield[J]. Soybean Science, 2024, 43(3):389-394.
|
[8] |
Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses[J]. Nature Reviews Microbiology, 2020, 18(11):649-660.doi: 10.1038/s41579-020-0402-3.
|
[9] |
Ferguson B J, Mens C, Hastwell A H, Zhang M B, Su H N, Jones C H, Chu X T, Gresshoff P M. Legume nodulation:the host controls the party[J]. Plant,Cell & Environment, 2019, 42(1):41-51.doi: 10.1111/pce.13348.
|
[10] |
|
|
Xu P X, Han L L, He J Z, Luo F, Zhang L M. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes[J]. Chinese Journal of Applied Ecology, 2017, 28(10):3440-3450.
|
[11] |
D'Haeze W, Holsters M. Nod factor structures,responses,and perception during initiation of nodule development[J]. Glycobiology, 2002, 12(6):79-105.doi: 10.1093/glycob/12.6.79R.
pmid: 12107077
|
[12] |
Dénarié J, Cullimore J. Lipo-oligosaccharide nodulation factors:a minireview new class of signaling molecules mediating recognition and morphogenesis[J]. Cell, 1993, 74(6):951-954.doi: 10.1016/0092-8674(93)90717-5.
pmid: 8402884
|
[13] |
Poole P, Ramachandran V, Terpolilli J. Rhizobia:from saprophytes to endosymbionts[J]. Nature Reviews Microbiology, 2018, 16(5):291-303.doi: 10.1038/nrmicro.2017.171.
|
[14] |
Evans H J, Bottomley P J, Newton W E. Nitrogen fixation research progress[M]. Dordrecht,Netherlands: Springer Netherlands,1985:277-283.
|
[15] |
Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase[J]. Nature Communications, 2013,4:2191.doi: 10.1038/ncomms3191.
|
[16] |
Ferguson B J, Indrasumunar A, Hayashi S, Lin M H, Lin Y H, Reid D E, Gresshoff P M. Molecular analysis of legume nodule development and autoregulation[J]. Journal of Integrative Plant Biology, 2010, 52(1):61-76.doi: 10.1111/j.1744-7909.2010.00899.x.
|
[17] |
Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D'Haeseleer K, Holsters M, Goormachtig S. CLE peptides control Medicago truncatula nodulation locally and systemically[J]. Plant Physiology, 2010, 153(1):222-237.doi: 10.1104/pp.110.153718.
|
[18] |
Lim C W, Lee Y W, Hwang C H. Soybean nodule-enhanced CLE peptides in roots act as signals in GmNARK-mediated nodulation suppression[J]. Plant & Cell Physiology, 2011, 52(9):1613-1627.doi: 10.1093/pcp/pcr091.
|
[19] |
Krusell L, Sato N, Fukuhara I, Koch B E V, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T, Sato S, Tabata S, Duc G, Parniske M, Wang T L, Kawaguchi M, Stougaard J. The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation[J]. The Plant Journal, 2011, 65(6):861-871.doi: 10.1111/j.1365-313X.2010.04474.x.
|
[20] |
Ferguson B J, Li D X, Hastwell A H, Reid D E, Li Y P, Jackson S A, Gresshoff P M. The soybean( Glycine max)nodulation-suppressive CLE peptide,GmRIC1,functions interspecifically in common white bean( Phaseolus vulgaris),but not in a supernodulating line mutated in the receptor PvNARK[J]. Plant Biotechnology Journal, 2014, 12(8):1085-1097.doi: 10.1111/pbi.12216.
pmid: 25040127
|
[21] |
Pant B D, Musialak-lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible W R. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing[J]. Plant Physiology, 2009, 150(3):1541-1555.doi: 10.1104/pp.109.139139.
|
[22] |
Zhang Z L, Zheng Y, Ham B K, Chen J Y, Yoshida A, Kochian L V, Fei Z J, Lucas W J. Vascular-mediated signalling involved in early phosphate stress response in plants[J]. Nature Plants, 2016,2:16033.doi: 10.1038/nplants.2016.33.
|
[23] |
Takahara M, Magori S, Soyano T, Okamoto S, Yoshida C, Yano K, Sato S, Tabata S, Yamaguchi K, Shigenobu S, Takeda N, Suzaki T, Kawaguchi M. Too much love,a novel Kelch repeat-containing F-box protein,functions in the long-distance regulation of the legume- Rhizobium symbiosis[J]. Plant & Cell Physiology, 2013, 54(4):433-447.doi: 10.1093/pcp/pct022.
|
[24] |
Xu H Y, Li Y J, Zhang K F, Li M J, Fu S Y, Tian Y Z, Qin T F, Li X X, Zhong Y J, Liao H. miR169c-NFYA-C-ENOD40 modulates nitrogen inhibitory effects in soybean nodulation[J]. New Phytologist, 2021, 229(6):3377-3392.doi: 10.1111/nph.17115.
pmid: 33245793
|
[25] |
Ling N, Wang T T, Kuzyakov Y. Rhizosphere bacteriome structure and functions[J]. Nature Communications, 2022, 13(1):836.doi: 10.1038/s41467-022-28448-9.
pmid: 35149704
|
[26] |
Raaijmakers J M, Paulitz T C, Steinberg C, Alabouvette C, Moënne-Loccoz Y. The rhizosphere:a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant and Soil, 2009, 321(1):341-361.doi: 10.1007/s11104-008-9568-6.
|
[27] |
Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8):478-486.doi: 10.1016/j.tplants.2012.04.001.
pmid: 22564542
|
[28] |
|
|
Liu J W, Li X Z, Yao M J. Research progress on assembly of plant rhizosphere microbial community[J]. Acta Microbiologica Sinica, 2021, 61(2):231-248.
|
[29] |
Zhang R F, Vivanco J M, Shen Q R. The unseen rhizosphere root-soil-microbe interactions for crop production[J]. Current Opinion in Microbiology, 2017, 37:8-14.doi: 10.1016/j.mib.2017.03.008.
pmid: 28433932
|
[30] |
Verbon E H, Liberman L M. Beneficial microbes affect endogenous mechanisms controlling root development[J]. Trends in Plant Science, 2016, 21(3):218-229.doi: 10.1016/j.tplants.2016.01.013.
pmid: 26875056
|
[31] |
Smith F A, Smith S E. What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants?[J]. Plant and Soil, 2011, 348(1):63-79.doi: 10.1007/s11104-011-0865-0.
|
[32] |
Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013,64:807-838.doi: 10.1146/annurev-arplant-050312-120106.
|
[33] |
Liu H W, Brettell L E, Qiu Z G, Singh B K. Microbiome-mediated stress resistance in plants[J]. Trends in Plant Science, 2020, 25(8):733-743.doi: 10.1016/j.tplants.2020.03.014.
pmid: 32345569
|
[34] |
Mendes R, Garbeva P, Raaijmakers J M. The rhizosphere microbiome:significance of plant beneficial,plant pathogenic,and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 2013, 37(5):634-663.doi: 10.1111/1574-6976.12028.
|
[35] |
Wang Y, Wang Y C. Trick or treat:microbial pathogens evolved apoplastic effectors modulating plant susceptibility to infection[J]. Molecular Plant-Microbe Interactions, 2018, 31(1):6-12.doi: 10.1094/MPMI-07-17-0177-FI.
pmid: 29090656
|
[36] |
Zhang Y Z, Xu J, Riera N, Jin T, Li J Y, Wang N. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the Citrus root-associated microbiome[J]. Microbiome, 2017, 5(1):97.doi: 10.1186/s40168-017-0304-4.
|
[37] |
Pérez-Jaramillo J E, Mendes R, Raaijmakers J M. Impact of plant domestication on rhizosphere microbiome assembly and functions[J]. Plant Molecular Biology, 2016, 90(6):635-644.doi: 10.1007/s11103-015-0337-7.
pmid: 26085172
|
[38] |
Zgadzaj R, Garrido-Oter R, Jensen D B, Koprivova A, Schulze-lefert P, Radutoiu S. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere,root,and nodule bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49):7996-8005.doi: 10.1073/pnas.1616564113.
pmid: 27864511
|
[39] |
|
|
Gao J M. The mechanisms in lateral roots of soybean with and without nodules on community and function[D]. Yangling: Northwest A&F University,2023.
|
[40] |
Zhong Y J, Yang Y Q, Liu P, Xu R N, Rensing C, Fu X D, Liao H. Genotype and Rhizobium inoculation modulate the assembly of soybean rhizobacterial communities[J]. Plant,Cell & Environment, 2019, 42(6):2028-2044.doi: 10.1111/pce.13519.
|
[41] |
|
|
Wang X Q, Zhong Y J, Liao H. Construction and application of three labeling vectors for Bradyrhizobia in soybean[J]. Soybean Science, 2023, 42(3):276-283.
|
[42] |
Yang J, Lan L Y, Jin Y, Yu N, Wang D, Wang E T. Mechanisms underlying legume- Rhizobium symbioses[J]. Journal of Integrative Plant Biology, 2022, 64(2):244-267.doi: 10.1111/jipb.13207.
|
[43] |
|
|
Zhao N L, Gu W, Zhang L L, Xia S Y, Zhao X, Wu L C. The impact of Russian highly efficient soybean rhizobacteria fertilizer on key characteristics and soybean yield[J]. Jiangsu Agricultural Science, 2014, 42(1):72-73.
|
[44] |
|
|
Sun Q S, Yuan C, Zhang Y X. Effects of reducing nitrogen fertilizer and inoculating rhizobium on photosynthetic characteristics and yield of black soybean[J]. Crops, 2022(4):132-137.
|
[45] |
Chen S M, Waghmode T R, Sun R B, Kuramae E E, Hu C S, Liu B B. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization[J]. Microbiome, 2019, 7(1):136.doi: 10.1186/s40168-019-0750-2.
pmid: 31640813
|
[46] |
|
|
Zhang J. Effects of Sinorhizobium fredii WGE03 and its sulfur metabolic mutants inoculation on soybean growth and rhizosphere bacterial communties[D]. Nanning: Guangxi University,2014.
|
[47] |
Bhatti A A, Haq S, Bhat R A. Actinomycetes benefaction role in soil and plant health[J]. Microbial Pathogenesis, 2017, 111:458-467.doi: 10.1016/j.micpath.2017.09.036.
pmid: 28923606
|
[48] |
Singh T, Singh D K. rhizospheric Microbacterium sp.P27 showing potential of lindane degradation and plant growth promoting traits[J]. Current Microbiology, 2019, 76(7):888-895.doi: 10.1007/s00284-019-01703-x.
|
[49] |
Jabeur R, Guyon V, Toth S, Pereira A E, Huynh M P, Selmani Z, Boland E, Bosio M, Beuf L, Clark P, Vallenet D, Achouak W, Audiffrin C, Torney F, Paul W, Heulin T, Hibbard B E, Toepfer S, Sallaud C. A novel binary pesticidal protein from Chryseobacterium arthrosphaerae controls western corn rootworm by a different mode of action to existing commercial pesticidal proteins[J]. PLoS One, 2023, 18(2):eo267220.doi: 10.1371/journal.pone.0267220.
|
[50] |
|
|
Liu Y M, Li C J, Xie X L, Chen M, Zhou L, Wang Y, Zhu H H, Yao Q. The growth-promoting effect of a phosphate solubilizing bacteria Microbacterium oxydans Y8 on Poncirus trifoliata and its influence on the functional genes related to phosphorus solubilization in soil[J]. China Fruits, 2023(12):73-81.
|
[51] |
Topp E, Mulbry W M, Zhu H, Nour S M, Cuppels D. Characterization of S-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils[J]. Applied and Environmental Microbiology, 2000, 66(8):3134-3141.doi: 10.1128/AEM.66.8.3134-3141.2000.
|
[52] |
Wang L X, Sun Z X, Su C, Wang Y L, Yan Q Q, Chen J H, Ott T, Li X. A GmNINa-miR172c-NNC1 regulatory network coordinates the nodulation and autoregulation of nodulation pathways in soybean[J]. Molecular Plant, 2019, 12(9):1211-1226.doi: 10.1016/j.molp.2019.06.002.
|
[53] |
Zhu F G, Deng J, Chen H, Liu P, Zheng L H, Ye Q Y, Li R, Brault M, Wen J Q, Frugier F, Dong J L, Wang T. A CEP peptide receptor-like kinase regulates auxin biosynthesis and ethylene signaling to coordinate root growth and symbiotic nodulation in Medicago truncatula[J]. The Plant Cell, 2020, 32(9):2855-2877.doi: 10.1105/tpc.20.00248.
|
[54] |
|
|
Tian J X, Liu S Y, Wang W F, Zheng F, Han L L, Zhang L M. Diversity of soybean rhizobia in Northeast China and their application[J]. Chinese Journal of Applied Ecology, 2024, 35(7): 1850-1858.
doi: 10.13287/j.1001-9332.202407.011
|
[55] |
|
|
Gu J C, Wang W M, Wang Z, Li L H, Jiang G J, Wang J P, Cheng Z B. Effects of maize and soybean intercropping on soil phosphorus bioavailability and microbial community structure in rhizosphere[J]. Chinese Journal of Applied Ecology, 2023, 34(11):3030-3038.
doi: 10.13287/j.1001-9332.202311.015
|
[56] |
|
|
Li C G, Li X M, Wang J G. Effect of soybean continuous cropping on bulk and rhizosphere soil microbial community function[J]. Acta Ecologica Sinica, 2006, 26(4):1144-1150.
|