[1] |
Zhang G W, Xu S C, Mao W H, Hu Q Z, Gong Y M. Determination of the genetic diversity of vegetable soybean( Glycine max (L.)Merr.)using EST-SSR markers[J]. Journal of Zhejiang University Science B, 2013, 14(4):279-288.doi: 10.1631/jzus.B1200243.
doi: 10.1631/jzus.B1200243
URL
|
[2] |
Hu R F, Zhang Y M, Chen Y H, Lin G Q. Dynamic metabolic profiling in vegetable soybean seed development[J]. Emirates Journal of Food and Agriculture, 2018, 30(2):90-98.doi: 10.9755/ejfa.2018.v30.i1.1594.
doi: 10.9755/ejfa.2018.v30.i1.1594
|
[3] |
Sowalsky R A, Noble A C. Comparison of the effects of concentration,pH and anion species on astringency and sourness of organic acids[J]. Chemical Senses, 1998, 23(3):343-349.doi: 10.1093/chemse/23.3.343.
doi: 10.1093/chemse/23.3.343
pmid: 9669047
|
[4] |
Baccichet I, Chiozzotto R, Bassi D, Gardana C, Cirilli M, Spinardi A. Characterization of fruit quality traits for organic acids content and profile in a large peach germplasm collection[J]. Scientia Horticulturae, 2021, 278:109865.doi: 10.1016/j.scienta.2020.109865.
doi: 10.1016/j.scienta.2020.109865
URL
|
[5] |
Green B G, Lim J, Osterhoff F, Blacher K, Nachtigal D. Taste mixture interactions:Suppression,additivity,and the predominance of sweetness[J]. Physiology & Behavior, 2010, 101(5):731-737.doi: 10.1016/j.physbeh.2010.08.013.
doi: 10.1016/j.physbeh.2010.08.013
URL
|
[6] |
doi: 10.27462/d.cnki.ghzhc.2019.000208
|
|
Mao Y Z. Quantitative study on sweet and sour taste interaction response and development of sensor combination[D]. Hangzhou: Zhejiang Gongshang University, 2019.
|
[7] |
Liebhard R, Koller B, Gianfranceschi L, Gessler C. Creating a saturated reference map for the apple( Malus ( domestica Borkh.)genome[J]. Theoretical and Applied Genetics, 2003, 106(8):1497-1508.doi: 10.1007/s00122-003-1209-0.
doi: 10.1007/s00122-003-1209-0
pmid: 12677403
|
[8] |
Maliepaard C, Alston F H, van Arkel G, Brown L M, Chevreau E, Dunemann F, Evans K M, Gardiner S, Guilford P, van Heusden A W, Janse J, Laurens F, Lynn J R, Manganaris A G, den Nijs A P M, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh J J, Vrielink-van Ginkel M, King G J. Aligning male and female linkage maps of apple( Malus pumila Mill.)using multi-allelic markers[J]. Theoretical and Applied Genetics, 1998, 97(1/2):60-73.doi: 10.1007/s001220050867.
doi: 10.1007/s001220050867
URL
|
[9] |
Zhang X X, Guan Z R, Wang L, Fu J, Zhang Y C, Li Z L, Ma L L, Liu P, Zhang Y L, Liu M, Li P, Zou C Y, He Y C, Lin H J, Yuan G S, Gao S B, Pan G T, Shen Y O. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize[J]. Molecular Genetics and Genomics, 2020, 295(2):409-420.doi: 10.1007/s00438-019-01631-2.
doi: 10.1007/s00438-019-01631-2
pmid: 31807910
|
[10] |
Zhang Y J, Liu Z X, Wang X R, Li Y, Li Y S, Gou Z W, Zhao X Z, Hong H L, Ren H L, Qi X S, Qiu L J. Identification of genes for drought resistance and prediction of gene candidates in soybean seedlings based on linkage and association mapping[J]. The Crop Journal, 2022, 10(3):830-839.doi: 10.1016/j.cj.2021.07.010.
doi: 10.1016/j.cj.2021.07.010
URL
|
[11] |
doi: 10.3969/j.issn.1000-9841.2002.01.002
|
|
Gai J Y, Wang M J, Chen C Z. Historical origin and development of Maodou production in China[J]. Soybean Science, 2002, 21(1):7-13.
|
[12] |
Zhang W, Xu W J, Zhang H M, Liu X Q, Cui X Y, Li S S, Song L, Zhu Y L, Chen X, Chen H T. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean[J]. Theoretical and Applied Genetics, 2021, 134(5):1329-1341.doi: 10.1007/s00122-021-03774-6.
doi: 10.1007/s00122-021-03774-6
pmid: 33507340
|
[13] |
Wang J B, Zhang Z W. GAPIT version 3:boosting power and accuracy for genomic association and prediction[J]. Genomics,Proteomics and Bioinformatics, 2021, 19(4):629-640.doi: 10.1016/j.gpb.2021.08.005.
doi: 10.1016/j.gpb.2021.08.005
|
[14] |
Song J F, Liu C Q, Li D J, Gu Z X. Evaluation of sugar,free amino acid,and organic acid compositions of different varieties of vegetable soybean( Glycine max[L.]Merr)[J]. Industrial Crops and Products, 2013, 50:743-749.doi: 10.1016/j.indcrop.2013.08.064.
doi: 10.1016/j.indcrop.2013.08.064
URL
|
[15] |
doi: 10.13982/j.mfst.1673-9078.2021.6.1032
|
|
Zhang Y M, Hu R F, Lin X M, Deng H M, Lan X L, Lin G Q. Analysis of metabolites in vegetable soybean seeds[J]. Tillage and Cultivation, 2022, 42(5):20-25.
|
[16] |
Yang K, Moon J K, Jeong N, Chun H K, Kang S T, Back K, Jeong S C. Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds[J]. Genes & Genomics, 2011, 33(6):685-692.doi: 10.1007/s13258-011-0043-z.
doi: 10.1007/s13258-011-0043-z
|
[17] |
Liu J, Zhou M X. The ALMT gene family performs multiple functions in plants[J]. Agronomy, 2018, 8(2):20.doi: 10.3390/agronomy8020020.
doi: 10.3390/agronomy8020020
URL
|
[18] |
Xu L L, Qiao X, Zhang M Y, Zhang S L. Genome-Wide analysis of aluminum-activated malate transporter family genes in six Rosaceae species,and expression analysis and functional characterization on malate accumulation in Chinese white pear[J]. Plant Science, 2018, 274:451-465.doi: 10.1016/j.plantsci.2018.06.022.
doi: 10.1016/j.plantsci.2018.06.022
URL
|
[19] |
Li C L, Dougherty L, Coluccio A E, Meng D, El-Sharkawy I, Borejsza-Wysocka E, Liang D, Piñeros M A, Xu K N, Cheng L L. Apple ALMT9 requires a conserved C-terminal domain for malate transport underlying fruit acidity[J]. Plant Physiology, 2020, 182(2):992-1006.doi: 10.1104/pp.19.01300.
doi: 10.1104/pp.19.01300
pmid: 31772076
|
[20] |
Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid K A S, Geiger D, Marten I, Martinoia E, Hedrich R. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells[J]. The Plant Journal:for Cell and Molecular Biology, 2010, 63(6):1054-1062.doi: 10.1111/j.1365-313X.2010.04302.x.
doi: 10.1111/j.1365-313X.2010.04302.x
URL
|