[1] |
Wang P C, Hsu C C, Du Y Y, Zhu P P, Zhao C Z, Fu X, Zhang C G, Paez J S, Macho A P, Tao W A, Zhu J K. Mapping proteome-wide targets of protein kinases in plant stress responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(6):3270-3280.doi: 10.1073/pnas.1919901117.
doi: 10.1073/pnas.1919901117
pmid: 31992638
|
[2] |
Khurana A, Akash, Roychowdhury A. Identification of phosphorus starvation inducible SnRK genes in tomato( Solanum lycopersicum L.)[J]. Journal of Plant Biochemistry and Biotechnology, 2021, 30(4):987-998.doi: 10.1007/s13562-021-00701-0.
doi: 10.1007/s13562-021-00701-0
|
[3] |
Niu L L, Dong B Y, Song Z H, Meng D, Fu Y J. Genome-wide identification and characterization of CIPK family and analysis responses to various stresses in apple( Malus domestica)[J]. International Journal of Molecular Sciences, 2018, 19(7):2131.doi: 10.3390/ijms19072131.
doi: 10.3390/ijms19072131
|
[4] |
Zhang Y, Zhou X N, Liu S T, Yu A Z, Yang C M, Chen X L, Liu J Y, Wang A X. Identification and functional analysis of tomato CIPK gene family[J]. International Journal of Molecular Sciences, 2019, 21(1):110.doi: 10.3390/ijms21010110.
doi: 10.3390/ijms21010110
URL
|
[5] |
Li L B, Zhang Y R, Liu K C, Ni Z F, Fang Z J, Sun Q X, Gao J W. Identification and bioinformatics analysis of SnRK2 and CIPK family genes in Sorghum[J]. Agricultural Sciences in China, 2010, 9(1):19-30.doi: 10.1016/S1671-2927(09)60063-8.
doi: 10.1016/S1671-2927(09)60063-8
URL
|
[6] |
Ma X, Li Q H, Yu Y N, Qiao Y M, Haq S U, Gong Z H. The CBL-CIPK pathway in plant response to stress signals[J]. International Journal of Molecular Sciences, 2020, 21(16):5668.doi: 10.3390/ijms21165668.
doi: 10.3390/ijms21165668
URL
|
[7] |
Weinl S, Kudla J. The CBL-CIPK Ca 2+-decoding signaling network:function and perspectives[J]. New Phytologist, 2009, 184(3):517-528.doi: 10.1111/j.1469-8137.2009.02938.x.
doi: 10.1111/j.1469-8137.2009.02938.x
URL
|
[8] |
Thoday-Kennedy E L, Jacobs A K, Roy S J. The role of the CBL-CIPK calcium signalling network in regulating ion transport in response to abiotic stress[J]. Plant Growth Regulation, 2015, 76(1):3-12.doi: 10.1007/s10725-015-0034-1.
doi: 10.1007/s10725-015-0034-1
URL
|
[9] |
Kanwar P, Sanyal S K, Tokas I, Yadav A K, Pandey A, Kapoor S, Pandey G K. Comprehensive structural,interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice[J]. Cell Calcium, 2014, 56(2):81-95.doi: 10.1016/j.ceca.2014.05.003.
doi: 10.1016/j.ceca.2014.05.003
URL
|
[10] |
Tai F J, Yuan Z H, Li S P, Wang Q, Liu F Y, Wang W. ZmCIPK8,a CBL-interacting protein kinase,regulates maize response to drought stress[J]. Plant Cell,Tissue and Organ Culture, 2016, 124(3):459-469.doi: 10.1007/s11240-015-0906-0.
doi: 10.1007/s11240-015-0906-0
|
[11] |
Li R F, Zhang J W, Wu G Y, Wang H Z, Chen Y J, Wei J H. HbCIPK2,a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum,confers salt and osmotic stress tolerance[J]. Plant,Cell & Environment, 2012, 35(9):1582-1600.doi: 10.1111/j.1365-3040.2012.02511.x.
doi: 10.1111/j.1365-3040.2012.02511.x
|
[12] |
Hu H C, Wang Y Y, Tsay Y F. AtCIPK8,a CBL-interacting protein kinase,regulates the low-affinity phase of the primary nitrate response[J]. Plant J, 2009, 57(2):264-278.doi: 10.1111/j.1365-313x.2008.03685.x.
doi: 10.1111/j.1365-313x.2008.03685.x
URL
|
[13] |
Huang S L, Jiang S F, Liang J S, Chen M. Roles of plant CBL-CIPK systems in abiotic stress responses[J]. Turkish Journal of Botany, 2019, 43(3):271-280.doi: 10.3906/bot-1810-35.
doi: 10.3906/bot-1810-35
|
[14] |
Lyzenga W J, Liu H X, Schofield A, Muise-Hennessey A, Stone S L. Arabidopsis CIPK26 interacts with KEG,components of the ABA signalling network and is degraded by the ubiquitin-proteasome system[J]. Journal of Experimental Botany, 2013, 64(10):2779-2791.doi: 10.1093/jxb/ert123.
doi: 10.1093/jxb/ert123
pmid: 23658427
|
[15] |
Zhu W Z, Wu D Z, Jiang L X, Ye L Z. Genome-wide identification and characterization of SnRK family genes in Brassica napus[J]. BMC Plant Biology, 2020, 20(1):287.doi: 10.1186/s12870-020-02484-3.
doi: 10.1186/s12870-020-02484-3
|
[16] |
Reyes T H, Pompeiano A, Ranieri A, Volterrani M, Guglielminetti L, Scartazza A. Photosynthetic performance of five cool-season turfgrasses under UV-B exposure[J]. Plant Physiology and Biochemistry, 2020, 151:181-187.doi: 10.1016/j.plaphy.2020.03.025.
doi: S0981-9428(20)30138-8
pmid: 32224389
|
[17] |
doi: 10.11686/cyxb20150204
|
|
Liu Q, Zhang S K, Sun W B, Yu L, Ma H L. Nutrition effects on growth and endogenous hormones in Kentucky bluegrass[J]. Acta Prataculturae Sinica, 2015, 24(2):31-40.
doi: 10.11686/cyxb20150204
|
[18] |
金一锋, 高岩松, 王琦, 王萌萌, 赵迪, 熊毅, 陈阳. 草地早熟禾蛋白激酶 SnRK2.4基因克隆及非生物胁迫响应分析[J]. 华北农学报, 2022, 37(5):9-15.doi: 10.7668/hbnxb.20193082.
doi: 10.7668/hbnxb.20193082
|
|
Jin Y F, Gao Y S, Wang Q, Wang M M, Zhao D, Xiong Y, Chen Y. Cloning of SnRK2.4 gene and it's response to abiotic stress in Kentucky bluegrass[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(5):9-15.
|
[19] |
Chen Z W, Zhou L H, Jiang P P, Lu R J, Halford N G, Liu C H. Genome-wide identification of sucrose nonfermenting-1-related protein kinase(SnRK)genes in barley and RNA-seq analyses of their expression in response to abscisic acid treatment[J]. BMC Genomics, 2021, 22(1):300.doi: 10.1186/s12864-021-07601-6.
doi: 10.1186/s12864-021-07601-6
|
[20] |
Sun W N, Zhang B, Deng J W, Chen L, Ullah A, Yang X Y. Genome-wide analysis of CBL and CIPK family genes in cotton:Conserved structures with divergent interactions and expression[J]. Physiol Mol Biol Plants, 2021, 27(2):359-368.doi: 10.1007/s12298-021-00943-1.
doi: 10.1007/s12298-021-00943-1
|
[21] |
Hu W, Xia Z Q, Yan Y, Ding Z H, Tie W W, Wang L Z, Zou M L, Wei Y X, Lu C, Hou X W, Wang W Q, Peng M. Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes[J]. Frontiers in Plant Science, 2015, 6:914.doi: 10.3389/fpls.2015.00914.
doi: 10.3389/fpls.2015.00914
pmid: 26579161
|
[22] |
doi: 10.13271/j.mpb.020.003837
|
|
Hong D L, An C, Xu R H, Ren M J, Zhao P P, Li X, Li L H. Cloning and expression analysis of wheat GzCIPK19 gene[J]. Molecular Plant Breeding, 2022, 20(12):3837-3846.
|
[23] |
doi: 10.3969/j.issn.1004-1524.2021.09.07
|
|
Xiong X, Zhao L N, Yang S L, Arif S, Zhang Y D. Genome-wide identification of CmCIPK family and its expression analysis under abiotic stress in melon[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9):1625-1639.
|
[24] |
doi: 10.13430/j.cnki.jpgr.2017.06.019
|
|
Feng Z J, Xu S C, Liu N, Zhang G W, Hu Q Z, Gong Y M. Expression character of vegetable soybean CIPKs in response to abiotic stresses and hormones[J]. Journal of Plant Genetic Resources, 2017, 18(6):1168-1178.
doi: 10.13430/j.cnki.jpgr.2017.06.019
|
[25] |
陈小晶, 王东梅, 关红辉, 郭剑, 沙小茜, 李永祥, 张登峰, 刘旭洋, 何冠华, 石云素, 宋燕春, 王天宇, 黎裕, 刘颖慧, 李春辉. 玉米CIPK基因家族的鉴定及 ZmCIPK3的抗旱性功能研究[J]. 植物遗传资源学报, 2022, 23(4):1064-1075.doi: 10.13430/j.cnki.jpgr.20220107006.
doi: 10.13430/j.cnki.jpgr.20220107006
|
|
Chen X J, Wang D M, Guan H H, Guo J, Sha X Q, Li Y X, Zhang D F, Liu X Y, He G H, Shi Y S, Song Y C, Wang T Y, Li Y, Liu Y H, Li C H. Identification of CIPK gene family members and investigation of the drought tolerance of ZmCIPK3 in maize[J]. Journal of Plant Genetic Resources, 2022, 23(4):1064-1075.
|
[26] |
doi: 10.7668/hbnxb.2018.06.012
|
|
Yang S Y, Zhuo W, Chen Q, Jiang Y, Tong Z, Li L Q, Ren X L, Lu L M. Analysis of the relationship between NtCIPK family gene expression and potassium content in tobacco[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(6):88-94.
doi: 10.7668/hbnxb.2018.06.012
|
[27] |
Xi Y, Liu J Y, Dong C, Cheng Z M. The CBL and CIPK gene family in grapevine( Vitis vinifera):Genome-wide analysis and expression profiles in response to various abiotic stresses[J]. Frontiers in Plant Science, 2017, 8:978.doi: 10.3389/fpls.2017.00978.
doi: 10.3389/fpls.2017.00978
URL
|
[28] |
Tang J, Lin J, Li H, Li X G, Yang Q S, Cheng Z M, Chang Y H. Characterization of CIPK family in Asian pear( Pyrus bretschneideri rehd)and Co-expression analysis related to salt and osmotic stress responses[J]. Frontiers in Plant Science, 2016, 7:1361.doi: 10.3389/fpls.2016.01361.
doi: 10.3389/fpls.2016.01361
pmid: 27656193
|
[29] |
Li J, Jiang M M, Ren L, Liu Y, Chen H Y. Identification and characterization of CBL and CIPK gene families in eggplant( Solanum melongena L.)[J]. Molecular Genetics and Genomics, 2016, 291(4):1769-1781.doi: 10.1007/s00438-016-1218-8.
doi: 10.1007/s00438-016-1218-8
URL
|
[30] |
Sun T, Wang Y, Wang M, Li T T, Zhou Y, Wang X T, Wei S Y, He G Y, Yang G X. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat( Triticum aestivum L.)[J]. BMC Plant Biology, 2015, 15(1):269.doi: 10.1186/s12870-015-0657-4.
doi: 10.1186/s12870-015-0657-4
URL
|
[31] |
Zhu K K, Chen F, Liu J Y, Chen X L, Hewezi T, Cheng ZM M. Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean[J]. Scientific Reports, 2016, 6(1):28225.doi: 10.1038/srep28225.
doi: 10.1038/srep28225
|
[32] |
He L R, Yang X Y, Wang L C, Zhu L F, Zhou T, Deng J W, Zhang X L. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene( GhCIPK6)reveals its involvement in multiple abiotic stress tolerance in transgenic plants[J]. Biochemical and Biophysical Research Communications, 2013, 435(2):209-215.doi: 10.1016/j.bbrc.2013.04.080.
doi: 10.1016/j.bbrc.2013.04.080
URL
|
[33] |
Su W H, Ren Y J, Wang D J, Huang L, Fu X Q, Ling H, Su Y C, Huang N, Tang H C, Xu L P, Que Y X. New insights into the evolution and functional divergence of the CIPK gene family in Saccharum[J]. BMC Genomics, 2020, 21(1):868.doi: 10.1186/s12864-020-07264-9.
doi: 10.1186/s12864-020-07264-9
|
[34] |
Wang Y, Li T T, John S J, Chen M J, Chang J L, Yang G X, He G Y. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 2018, 123:103-113.doi: 10.1016/j.plaphy.2017.11.019.
doi: S0981-9428(17)30388-1
pmid: 29227949
|
[35] |
Kim K N, Cheong Y H, Grant J J, Pandey G K, Luan S. CIPK3,a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis[J]. The Plant Cell, 2003, 15(2):411-423.doi: 10.1105/tpc.006858.
doi: 10.1105/tpc.006858
URL
|
[36] |
罗青晨. 二穗短柄草BdCIPK31基因抗逆功能研究[D]. 武汉: 华中科技大学, 2017.
|
|
Luo Q C. Functional characterization of BdCIPK31 in response to abiotic stress[D]. Wuhan: Huazhong University of Science and Technology, 2017.
|
[37] |
doi: 10.27152/d.cnki.ghanu.2019.001514
|
|
Huang S L. Study on the function of CIPK5 gene in Bermuda grass and rice[D]. Guangzhou: South China Agricultural University, 2019.
|
[38] |
Luo Q C, Wei Q H, Wang R B, Zhang Y, Zhang F, He Y, Zhou S Y, Feng J L, Yang G X, He G Y. BdCIPK31,a calcineurin B-like protein-interacting protein kinase,regulates plant response to drought and salt stress[J]. Frontiers in Plant Science, 2017, 8:1184.doi: 10.3389/fpls.2017.01184.
doi: 10.3389/fpls.2017.01184
URL
|