[13] |
Bäurle I, Dean C. Differential interactions of the autonomous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets[J]. PLoS One, 2008, 3(7):e2733.doi: 10.1371/journal.pone.0002733.
doi: 10.1371/journal.pone.0002733
|
[14] |
Veley K M, Michaels S D. Functional redundancy and new roles for genes of the autonomous floral-promotion pathway[J]. Plant Physiology, 2008, 147(2):682-695.doi: 10.1104/pp.108.118927.
doi: 10.1104/pp.108.118927
pmid: 18408043
|
[15] |
Ripoll J J, Rodríguez-Cazorla E, Gonzălez-Reig S, And jar A, Alonso-Cantabrana H, Perez-Amador M A, Carbonell J, Martínez-Laborda A, Vera A. Antagonistic interactions between Arabidopsis K-homology domain genes uncover PEPPER as a positive regulator of the central floral repressor FLOWERING LOCUS C[J]. Developmental Biology, 2009, 333(2):251-262.doi: 10.1016/j.ydbio.2009.06.035.
doi: 10.1016/j.ydbio.2009.06.035
pmid: 19576878
|
[16] |
Rodríguez-Cazorla E, Ripoll J J, Andújar A, Bailey L J, Martínez-Laborda A, Yanofsky M F, Vera A. K-homology nuclear ribonucleoproteins regulate floral organ identity and determinacy in Arabidopsis[J]. PLoS Genetics, 2015, 11(2):e1004983.doi: 10.1371/journal.pgen.1004983.
doi: 10.1371/journal.pgen.1004983
|
[17] |
Huang Y Y, Xing X J, Tang Y, Jin J Y, Ding L, Song A P, Chen S M, Chen F D, Jiang J F, Fang W M. An ethylene responsive transcription factor and a flowering locus KH domain homologue jointly modulate photoperiodic flowering in chrysanthemum[J]. Plant Cell and Environment, 2022, 45(5):1442-1456.doi: 10.1111/pce.14261.
doi: 10.1111/pce.14261
URL
|
[18] |
Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0:An upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8):1296-1297.doi: 10.1093/bioinformatics/btu817.
doi: 10.1093/bioinformatics/btu817
URL
|
[1] |
doi: 10.15957/j.cnki.jjdl.2022.12.011
|
|
Lu Y J, Chen Y F, Hong Y. Optimization of soybean import layout in Chinaa's considering risk and cost[J]. Economic Geography, 2022, 42(12):104-114.
|
[2] |
孟凡立, 李明月, 洪志鹏, 赵洋, 王子叶, 冯广慧, 王旋, 孔丹珣, 王莞迪, 张玲. 转TaDREB3a大豆品系KD1遗传稳定性分析及抗旱性鉴定[J]. 东北农业大学学报, 2021, 52(8):1-11.doi: 10.3969/j.issn.1005-9369.2021.08.001.
doi: 10.3969/j.issn.1005-9369.2021.08.001
|
|
Meng F L, Li M Y, Hong Z P, Zhao Y, Wang Z Y, Feng G H, Wang X, Kong D X, Wang W D, Zhang L. Analysis on genetic stability and drought resistance identification of transgenic TaDREB3a soybean line KD1[J]. Journal of Northeast Agricultural University, 2021, 52(8):1-11.
|
[3] |
Siomi H, Matunis M J, Michael W M, Dreyfuss G. The pre-mRNA binding K protein contains a novel evolutionary conserved motif[J]. Nucleic Acids Research, 1993, 21(5):1193-1198.doi: 10.1093/nar/21.5.1193.
doi: 10.1093/nar/21.5.1193
pmid: 8464704
|
[4] |
Grishin N V. KH domain:One motif,two folds[J]. Nucleic Acids Research, 2001, 29(3):638-643.doi: 10.1093/nar/29.3.638.
doi: 10.1093/nar/29.3.638
pmid: 11160884
|
[5] |
Wang Z Y, Qiu H, He J B, Liu L X, Xue W, Fox A, Tickner J, Xu J K. The emerging roles of hnRNPK[J]. Journal of Cellular Physiology, 2020, 235(3):1995-2008.doi: 10.1002/jcp.29186.
doi: 10.1002/jcp.29186
pmid: 31538344
|
[19] |
Buchan D W A, Jones D T. The PSIPRED protein analysis workbench:20 years on[J]. Nucleic Acids Research, 2019, 47(W1):W402-W407.doi: 10.1093/nar/gkz297.
doi: 10.1093/nar/gkz297
URL
|
[20] |
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl S A A, Ballard A J, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior A W, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873):583-589.doi: 10.1038/s41586-021-03819-2.
doi: 10.1038/s41586-021-03819-2
|
[21] |
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. AlphaFold Protein Structure Database:massively expanding the structural coverage of protein-sequence space with high-accuracy models[J]. Nucleic Acids Research, 2022, 50(D1):D439-D444.doi: 10.1093/nar/gkab1061.
doi: 10.1093/nar/gkab1061
URL
|
[6] |
Zhang Y J, Ma Y, Liu R Q, Li G L. Genome-wide characterization and expression analysis of KH family genes response to ABA and SA in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2022, 23(1):511.doi: 10.3390/ijms23010511.
doi: 10.3390/ijms23010511
URL
|
[7] |
Karlsson P, Danger C M, Seymour D K, Wang H, Wang X, Hagmann J, Kulcheski F, Manavella P A. KH domain protein RCF3 is a tissue-biased regulator of the plant miRNA biogenesis cofactor HYL1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(45):14096-14101.doi: 10.1073/pnas.1512865112.
doi: 10.1073/pnas.1512865112
pmid: 26512101
|
[8] |
Dai G Y, Chen D K, Sun Y P, Liang W Y, Liu Y, Huang L Q, Li Y K, He J F, Yao N. The Arabidopsis KH-domain protein FLOWERING LOCUS Y delays flowering by upregulating FLOWERING LOCUS C family members[J]. Plant Cell Reports, 2020, 39(12):1705-1717.doi: 10.1007/s00299-020-02598-w.
doi: 10.1007/s00299-020-02598-w
|
[9] |
Cheng Y L, Kato N, Wang W M, Li J J, Chen X M. Two RNA binding proteins,HEN4 and HUA1,act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana[J]. Developmental Cell, 2003, 4(1):53-66.doi: 10.1016/s1534-5807(02)00399-4.
doi: 10.1016/s1534-5807(02)00399-4
URL
|
[10] |
Ortuño-Miquel S, Rodríguez-Cazorla E, Zavala-Gonzalez E A, Martínez-Laborda A, Vera A. Arabidopsis HUA ENHANCER 4 delays flowering by upregulating the MADS-box repressor genes FLC and MAF4[J]. Scientific Reports,2019,9(1):1478. doi: 10.1038/s41598-018-38327-3.
doi: 10.1038/s41598-018-38327-3
|
[11] |
Lim M H, Kim J, Kim Y S, Chung K S, Seo Y H, Lee I, Kim J, Hong C B, Kim H J, Park C M. A new Arabidopsis gene,FLK,encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C[J]. The Plant Cell, 2004, 16(3):731-740.doi: 10.1105/tpc.019331.
doi: 10.1105/tpc.019331
URL
|
[22] |
Lescot M, D hais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1):325-327.doi: 10.1093/nar/30.1.325.
doi: 10.1093/nar/30.1.325
URL
|
[23] |
Kumar S, Stecher G, Tamura K. MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7):1870-1874.doi: 10.1093/molbev/msw054.
doi: 10.1093/molbev/msw054
URL
|
[24] |
Shi R X, Xu W Y, Liu T, Cai C M, Li S. VrLELP controls flowering time under short-day conditions in Arabidopsis[J]. Journal of Plant Research, 2021, 134(1):141-149.doi: 10.1007/s10265-020-01235-7.
doi: 10.1007/s10265-020-01235-7
|
[25] |
Zhang D J, Zhao M X, Li S, Sun L J, Wang W D, Cai C M, Dierking E C, Ma J X. Plasticity and innovation of regulatory mechanisms underlying seed oil content mediated by duplicated genes in the palaeopolyploid soybean[J]. The Plant Journal, 2017, 90(6):1120-1133.doi: 10.1111/tpj.13533.
doi: 10.1111/tpj.13533
pmid: 28295817
|
[26] |
Chen L Y, Nan H Y, Kong L P, Yue L, Yang H, Zhao Q S, Fang C, Li H Y, Cheng Q, Lu S J, Kong F J, Liu B H, Dong L D. Soybean AP1 homologs control flowering time and plant height[J]. Journal of Integrative Plant Biology, 2020, 62(12):1868-1879.doi: 10.1111/jipb.12988.
doi: 10.1111/jipb.12988
URL
|
[27] |
Liu Y C, Du H L, Li P C, Shen Y T, Peng H, Liu S L, Zhou G A, Zhang H K, Liu Z, Shi M, Huang X H, Li Y, Zhang M, Wang Z, Zhu B G, Han B, Liang C Z, Tian Z X. Pan-genome of wild and cultivated soybeans[J]. Cell, 2020, 182(1):162-176.e13.doi: 10.1016/j.cell.2020.05.023.
doi: S0092-8674(20)30618-8
pmid: 32553274
|
[28] |
doi: 10.7668/hbnxb.20193021
|
|
Zhang B. Functional analysis of soybean GmPP2C89 gene under salt stress[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(4):20-27.
|
[29] |
Zhang Q, Liang Z, Cui X A, Ji C M, Li Y, Zhang P X, Liu J R, Riaz A, Yao P, Liu M, Wang Y P, Lu T G, Yu H, Yang D L, Zheng H K, Gu X F. N 6-methyladenine DNA methylation in Japonica and indica rice genomes and its association with gene expression,plant development,and stress responses[J]. Molecular Plant, 2018, 11(12):1492-1508.doi: 10.1016/j.molp.2018.11.005.
doi: S1674-2052(18)30341-1
pmid: 30448535
|
[30] |
Xu X R, Xu J Y, Yuan C, Hu Y K, Liu Q G, Chen Q Q, Zhang P C, Shi N N, Qin C. Characterization of genes associated with TGA7 during the floral transition[J]. BMC Plant Biology, 2021, 21(1):367.doi: 10.1186/s12870-021-03144-w.
doi: 10.1186/s12870-021-03144-w
pmid: 34380420
|
[31] |
Cheng J Z, Zhou Y P, Lü T X, Xie C P, Tian C G. Research progress on the autonomous flowering time pathway in Arabidopsis[J]. Physiology and Molecular Biology of Plants, 2017, 23(3):477-485.doi: 10.1007/s12298-017-0458-3.
doi: 10.1007/s12298-017-0458-3
URL
|
[32] |
Fabian M, Gao M, Zhang X N, Shi J L, Vrydagh L, Kim S H, Patel P, Hu A R, Lu H. The flowering time regulator FLK controls pathogen defense in Arabidopsis thaliana[J]. Plant Physiology, 2023: 191(4):2461-2474.doi: 10.1093/plphys/kiad021.
doi: 10.1093/plphys/kiad021
URL
|
[12] |
Mockler T C, Yu X H, Shalitin D, Parikh D, Michael T P, Liou J, Huang J, Smith Z, Alonso J M, Ecker J R, Chory J, Lin C T. Regulation of flowering time in Arabidopsis by K homology domain proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(34):12759-12764.doi: 10.1073/pnas.0404552101.
doi: 10.1073/pnas.0404552101
pmid: 15310842
|