[1] |
Gibert C, Chadœuf J, Vercambre G, Génard M, Lescourret F. Cuticular cracking on nectarine fruit surface:spatial distribution and development in relation to irrigation and thinning[J]. Journal of the American Society for Horticultural Science, 2007, 132(5):583-591.doi: 10.21273/jashs.132.5.583.
|
[2] |
|
|
Zhang C Y, Cheng R, Xu B H, Gu Y, Huang D Y, Sun Y D. Identification of candidate genes for watermelon leaf yellowing based on BSA and transcriptome analysis[J]. Jiangsu Journal of Agricultural Sciences, 2024, 40(1):165-173.
|
[3] |
|
|
Ren Y C, Liu X C, Wang W Y, Huo J Z, Guo C J, Zhao W X. Research progress of virus resistance in watermelon[J]. China Cucurbits and Vegetables, 2022, 35(2):1-6.
|
[4] |
赵尊练, 王鸣. 西瓜种质果实耐贮性机理的研究[J]. 园艺学报, 1994, 21(1):99-100.
|
|
Zhao Z L, Wang M. Study on the mechanism of storage resistance of watermelon germplasm fruit[J]. Acta Horticulturae Sinica, 1994, 21(1):99-100.
|
[5] |
|
|
Wang X Z, Yang T T, Liu Z, Sun L, Zhu Z C, Gao P, Liu S, Luan F S. Analysis on hardness related characters of watermelon rind[J]. Journal of Northeast Agricultural University, 2020, 51(2):35-44.
|
[6] |
|
|
Jiang H K. Mechanism of fruit cracking and molecular marker in watermelon(Citrulls lanatus)[D]. Nanjing: Nanjing Agricultural University, 2010.
|
[7] |
Liao N Q, Hu Z Y, Li Y Y, Hao J F, Chen S N, Xue Q, Ma Y Y, Zhang K J, Mahmoud A, Ali A, Malangisha G K, Lyu X L, Yang J H, Zhang M F. Ethylene-responsive factor 4 is associated with the desirable rind hardness trait conferring cracking resistance in fresh fruits of watermelon[J]. Plant Biotechnology Journal, 2020, 18(4):1066-1077.doi: 10.1111/pbi.13276.
pmid: 31610078
|
[8] |
Zhan Y F, Hu W, He H, Dang X M, Chen S B, Bie Z L. A major QTL identification and candidate gene analysis of watermelon fruit cracking using QTL-seq and RNA-seq[J]. Frontiers in Plant Science, 2023, 14:1166008.doi: 10.3389/fpls.2023.1166008.
|
[9] |
范敏, 许勇, 张海英, 任华中, 康国斌, 王永健, 陈杭. 西瓜果实性状QTL定位及其遗传效应分析[J]. 遗传学报, 2000, 27(10):902-910.
pmid: 11192435
|
|
Fan M, Xu Y, Zhang H Y, Ren H Z, Kang G B, Wang Y J, Chen H. Identification of quantitative trait loci associated with fruit traits in watermelon[Citullus lanantus (thanb) mansf]and analysis of their genetic effects[J]. Acta Genetica Sinica, 2000, 27(10):902-910.
pmid: 11192435
|
[10] |
Guo S G, Zhang J G, Sun H H, et al. The draft genome of watermelon ( Citrullus lanatus) and resequencing of 20 diverse accessions[J]. Nature Genetics, 2013, 45(1):51-58.doi: 10.1038/ng.2470.
pmid: 23179023
|
[11] |
Yang T T, Amanullah S, Pan J H, Chen G X, Liu S, Ma S W, Wang J M, Gao P, Wang X Z. Identification of putative genetic regions for watermelon rind hardness and related traits by BSA-seq and QTL mapping[J]. Euphytica, 2021, 217(2):19.doi: 10.1007/s10681-020-02758-9.
|
[12] |
|
|
Song X M. The genome of brassica Rapa crops and bioinfomatic analyses for the important agronomic traits related genes[D]. Nanjing: Nanjing Agricultural University, 2015.
|
[13] |
张敬敬, 李冰, 史宇凡, 高秀瑞, 潘秀清, 宋雪, 武彦荣. 不同硬度西瓜果皮的转录组测序及相关基因表达分析[J]. 华北农学报, 2022, 37(3):44-52.doi: 10.7668/hbnxb.20192957.
|
|
Zhang J J, Li B, Shi Y F, Gao X R, Pan X Q, Song X, Wu Y R. Transcriptome sequencing and gene expression analysis of watermelon peel with different firmness[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(3):44-52.
doi: 10.7668/hbnxb.20192957
|
[14] |
Gao Y, Guo Y, Su Z Y, Yu Y, Zhu Z C, Gao P, Wang X Z. Transcriptome analysis of genes related to fruit texture in watermelon[J]. Scientia Horticulturae, 2020, 262:109075.doi: 10.1016/j.scienta.2019.109075.
|
[15] |
Guo Z H, Cai L J, Chen Z Q, Wang R Y, Zhang L M, Guan S W, Zhang S H, Ma W D, Liu C X, Pan G J. Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-Seq and RNA-Seq[J]. Royal Society Open Science, 2020, 7(11):201081.doi: 10.1098/rsos.201081.
|
[16] |
Wang X, Liu C K, Tu B J, Li Y S, Chen H, Zhang Q Y, Liu X B. Characterization on a novel rolled leaves and short petioles soybean mutant based on Seq-BSA and RNA-seq analysis[J]. Journal of Plant Biology, 2022, 65(4):261-277.doi: 10.1007/s12374-020-09295-x.
|
[17] |
Ye S H, Yan L, Ma X W, Chen Y P, Wu L M, Ma T T, Zhao L, Yi B, Ma C Z, Tu J X, Shen J X, Fu T D, Wen J. Combined BSA-seq based mapping and RNA-seq profiling reveal candidate genes associated with plant architecture in Brassica napus[J]. International Journal of Molecular Sciences, 2022, 23(5):2472.doi: 10.3390/ijms23052472.
|
[18] |
Hill J T, Demarest B L, Bisgrove, Gorsi B, Su Y C, Yost H J. MMAPPR:mutation mapping analysis pipeline for pooled RNA-seq[J]. Genome Research, 2013 23:687-697.
|
[19] |
Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R. MutMap+:genetic mapping and mutant identification without crossing in rice[J]. PLoS One, 2013 8(7):e68529.
|
[20] |
|
|
Wu Y M, Lin J Y, Liu Y X, Li D T, Zhang Z Q, Zheng X M, Pang H B. Identification of rice plant height-associated QTL using BSA-seq and RNA-seq[J]. Biotechnology Bulletin, 2023, 39(8):173-184.
|
[21] |
|
|
Zeng W Y, Lai Z G, Sun Z D, Yang S Z, Chen H Z, Tang X M. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq[J]. Acta Agronomica Sinica, 2021, 47(8):1460-1471.
|
[22] |
|
|
Sun Y Q, Chen S L, Chu J H, Li X H, Zhang C Y. Mining of QTLs and candidate genes for pod and seed traits via combining BSA-seq and linkage mapping in soybean[J]. Journal of Agricultural Science and Technology, 2023, 25(7):29-42.
|
[23] |
Zhang J J, Li B, Gao X R, Pan X Q, Wu Y R. Integrating transcriptomic and metabolomic analyses to explore the effect of color under fruit calyx on that of fruit apex in eggplant ( Solanum melongena L.)[J]. Frontiers in Genetics, 2022, 13:889461.doi: 10.3389/fgene.2022.889461.
|
[24] |
Qin G H, Liu C Y, Li J Y, Qi Y J, Gao Z H, Zhang X L, Yi X K, Pan H F, Ming R, Xu Y L. Diversity of metabolite accumulation patterns in inner and outer seed Coats of pomegranate:exploring their relationship with genetic mechanisms of seed coat development[J]. Horticulture Research, 2020, 7:10.doi: 10.1038/s41438-019-0233-4.
|
[25] |
Umer M J, Bin Safdar L, Gebremeskel H, Zhao S J, Yuan P L, Zhu H J, Kaseb M O, Anees M, Lu X Q, He N, Gong C S, Liu W G. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles[J]. Horticulture Research, 2020, 7:193.doi: 10.1038/s41438-020-00416-8.
pmid: 33328462
|
[26] |
Anees M, Zhu H J, Umer M J, Gong C S, Yuan P L, Lu X Q, He N, Kaseb M O, Yang D D, Zhao Y, Liu W G. Identification of an Aux/IAA regulator for flesh firmness using combined GWAS and bulked segregant RNA-Seq analysis in watermelon[J]. Horticultural Plant Journal, 2024, 10(5):1198-1213.doi: 10.1016/j.hpj.2023.05.018.
|
[27] |
Anees M, Gao L, Gong C S, Umer M J, Yuan P L, Zhu H J, Lu X Q, He N, Kaseb M O, Yang D D, Zhao Y, Liu W G. Aux/IAA gene Cla004102,is involved in synergistic regulation of various endogenous hormones,regulating flesh firmness in watermelon[J]. Scientia Horticulturae, 2023, 310:111719.doi: 10.1016/j.scienta.2022.111719.
|
[28] |
|
|
Yi P, Huang F, Li L, Sun J, Hu M J, Bi J F, Teng J W. Cloning and expression analysis of ethylene response factor gene MiERF113 in mango (Mangnifera indica L.)[J]. Chinese Journal of Tropical Crops, 2022, 43(9):1751-1758.
|
[29] |
车永梅, 陈慧婷, 张岁芳, 惠梦玲, 叶青, 侯丽霞, 刘新. 葡萄VvWRKY13介导乙烯生物合成调控果实发育[J]. 华北农学报, 2024, 39(2):99-105.doi: 10.7668/hbnxb.20194673.
|
|
Che Y M, Chen H T, Zhang S F, Hui M L, Ye Q, Hou L X, Liu X. VvWRKY13 from Vitis vinifera regulate fruit development by controlling ethylene biosynthesis[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(2):99-105.
|