[1] |
Severino L S, Auld D L, Baldanzi M, Cândido M J D, Chen G, Crosby W, Tan D, He X H, Lakshmamma P, Lavanya C, Machado O L T, Mielke T, Milani M, Miller T D, Morris J B, Morse S A, Navas A A, Soares D J, Sofiatti V, Wang M L, Zanotto M D, Zieler H. A review on the challenges for increased production of castor[J]. Agronomy Journal, 2012, 104(4):853-880.doi: 10.2134/agronj2011.0210.
|
[2] |
Scarpa A, Guerci A. Various uses of the castor oil plant( Ricinus communis L.).A review[J]. Journal of Ethnopharmacology, 1982, 5(2):117-137.doi: 10.1016/0378-8741(82)90038-1.
pmid: 7035750
|
[3] |
Rukhsar, Patel M P, Parmar D J, Kalola A D, Kumar S. Morphological and molecular diversity patterns in castor germplasm accessions[J]. Industrial Crops and Products, 2017, 97:316-323.doi: 10.1016/j.indcrop.2016.12.036.
|
[4] |
|
|
Zhang X S, Yang J G, Yang R H, Xu N S, Liu X Y, Du G. Study of the relationship between genetic distance and heterosis in castor[J]. Scientia Agricultura Sinica, 2006, 39(3):633-640.
|
[5] |
Yadav P, Anjani K. Assessment of variation in castor genetic resources for oil characteristics[J]. Journal of the American Oil Chemists' Society, 2017, 94(4):611-617.doi: 10.1007/s11746-017-2961-7.
|
[6] |
Randhir S A S P. Molecular manipulation of source sink interactions in crop plants[J]. Proceedings of Indian National Science Academy, 2015, 65(6B):351-376.doi: 10.1038/s41477-020-0590-x.
|
[7] |
Reynolds M P, Rajaram S, Sayre K D. Physiological and genetic changes of irrigated wheat in the post green revolution period and approaches for meeting projected global demand[J]. Crop Science, 1999, 39(6):1611-1621.doi: 10.2135/cropsci1999.3961611x.
|
[8] |
Hay R M. Harvest index:a review of its use in plant breeding and crop physiology[J]. Annals of Applied Biology, 1995, 126(1):197-216.doi: 10.1111/j.1744-7348.1995.tb05015.x.
|
[9] |
Marri P R, Sarla N, Reddy L V, Siddiq E A. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005, 6:33.doi: 10.1186/1471-2156-6-33.
|
[10] |
|
|
Xue X, Wu Y E, Guo W C. Study on relationship between wheat harvest index and main agronomic characters[J]. Journal of Henan Institute of Science and Technology(Natural Science Edition), 2010, 38(3):1-3.
|
[11] |
|
|
Gu S L, Lu J N, Huang J X, Yang T, He X L, Li D N, Yeboah A, Yin X G. Evaluation of harvest index in castor hybrids combinations[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(4):860-868.
|
[12] |
Zhang Z H, Li P, Wang L X, Hu Z L, Zhu L H, Zhu Y G. Genetic dissection of the relationships of biomass production and partitioning with yield and yield related traits in rice[J]. Plant Science, 2004, 167(1):1-8.doi: 10.1016/j.plantsci.2004.01.007.
|
[13] |
Saito H, Fukuta Y, Obara M, Tomita A, Ishimaru T, Sasaki K, Fujita D, Kobayashi N. Two novel QTLs for the harvest index that contribute to high-yield production in rice( Oryza sativa L.)[J]. Rice, 2021, 14(1):18.doi: 10.1186/s12284-021-00456-1.
|
[14] |
Chao H B, Raboanatahiry N, Wang X D, Zhao W G, Chen L, Guo L X, Li B J, Hou D L, Pu S, Zhang L N, Wang H, Wang B S, Li M T. Genetic dissection of harvest index and related traits through genome-wide quantitative trait locus mapping in Brassica napus L.[J]. Breeding Science, 2019, 69(1):104-116.doi: 10.1270/jsbbs.18115.
|
[15] |
Lu K, Xiao Z C, Jian H J, Peng L, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus[J]. Scientific Reports, 2016, 6:36452.doi: 10.1038/srep36452.
|
[16] |
Pradhan S, Ali Babar M, Robbins K, Bai G H, Mason R E, Khan J, Shahi D, Avci M, Guo J, Maksud Hossain M, Bhatta M, Mergoum M, Asseng S, St Amand P, Gezan S, Baik B K, Blount A, Bernardo A. Understanding the genetic basis of spike fertility to improve grain number,harvest index,and grain yield in wheat under high temperature stress environments[J]. Frontiers in Plant Science, 2019, 10:1481.doi: 10.3389/fpls.2019.01481.
pmid: 31850009
|
[17] |
Porker K, Straight M, Hunt J R. Evaluation of G×E×M interactions to increase harvest index and yield of early sown wheat[J]. Frontiers in Plant Science, 2020, 11:994.doi: 10.3389/fpls.2020.00994.
|
[18] |
Ruiz A, Trifunovic S, Eudy D M, Sciarresi C S, Baum M, Danalatos G J N, Elli E F, Kalogeropoulos G, King K, dos Santos C, Thies A, Pico L O, Castellano M J, Schnable P S, Topp C, Graham M, Lamkey K R, Vyn T J, Archontoulis S V. Harvest index has increased over the last 50 years of maize breeding[J]. Field Crops Research, 2023, 300:108991.doi: 10.1016/j.fcr.2023.108991.
|
[19] |
杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3):719-730.doi: 10.3724/SP.J.1006.2023.14195.
|
|
Yang J F, Wang Z, Qiao L Y, Wang Y, Zhao Y T, Zhang H B, Shen D G, Wang H W, Cao Y. QTL mapping of seed size traits based on a high-density genetic map in castor[J]. Acta Agronomica Sinica, 2023, 49(3):719-730.
|
[20] |
刘臣, 陆建农, 殷学贵, 毕川, 文淡悠, 郑军, 刘帅, 石卓兴, 成粤湘. 基于QTL定位的蓖麻株高性状遗传解析[J]. 作物学报, 2014, 40(4):751-759.doi: 10.3724/SP.J.1006.2014.00751.
|
|
Liu C, Lu J N, Yin X G, Bi C, Wen D Y, Zheng J, Liu S, Shi Z X, Cheng Y X. Genetic analysis of traits related to plant height in Ricinus communis L.based on QTL mapping[J]. Acta Agronomica Sinica, 2014, 40(4):751-759.
|
[21] |
Yeboah A, Lu J N, Ting Y, Karikari B, Gu S L, Xie Y, Liu H Y, Yin X G. Genome-wide association study identifies loci,beneficial alleles,and candidate genes for cadmium tolerance in castor( Ricinus communis L.)[J]. Industrial Crops and Products, 2021, 171:113842.doi: 10.1016/j.indcrop.2021.113842.
|
[22] |
Lu J N, Shi Y Z, Yin X G, Liu S, Liu C, Wen D Y, Li W J, He X L, Yang T. The genetic mechanism of sex type,a complex quantitative trait,in Ricinus communis L.[J]. Industrial Crops and Products, 2019, 128:590-598.doi: 10.1016/j.indcrop.2018.11.023.
|
[23] |
刘海燕, 陆建农, 殷学贵, 顾帅磊, 谢钰, 张柳琴, 黄冠荣, 刘朝裕, 张肖肖, 左金鹰. 蓖麻根腐病抗性鉴定及其SSR标记的初步建立[J]. 广西植物, 2023, 43(7):1326-1334.doi: 10.11931/guihaia.gxzw202202049.
|
|
Liu H Y, Lu J N, Yin X G, Gu S L, Xie Y, Zhang L Q, Huang G R, Liu C Y, Zhang X X, Zuo J Y. Identification of resistance to root rot and preliminary establishment of its SSR markers in castor bean[J]. Guihaia, 2023, 43(7):1326-1334.
|
[24] |
陈森, 陆建农, 施玉珍, 汪亚菲, 王亚如, 何展泳, 殷学贵. 蓖麻枯萎病抗性的QTL定位分析[J]. 中国油料作物学报, 2019, 41(1):18-24.
|
|
Chen S, Lu J N, Shi Y Z, Wang Y F, Wang Y R, He Z Y, Yin X G. Mapping QTLs conferring resistance to Fusarium wilt in castor(Ricinus communis L.)[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(1):18-24.
|
[25] |
严兴初. 蓖麻种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2007.
|
|
Yan X C. Castor bean germplasm resource description specifi-cation and standard data[M]. Beijing: China Agriculture Press, 2007
|
[26] |
Liu S, Yin X G, Lu J N, Liu C, Bi C, Zhu H B, Shi Y Z, Zhang D, Wen D Y, Zheng J, Cui Y, Li W J. The first genetic linkage map of Ricinus communis L.based on genome-SSR markers[J]. Industrial Crops and Products, 2016, 89:103-108.doi: 10.1016/j.indcrop.2016.04.063.
|
[27] |
Yeboah A, Lu J N, Gu S L, Liu H Y, Shi Y Z, Amoanimaa-Dede H, Agyenim-Boateng K G, Payne J, Yin X G. Evaluation of two wild castor( Ricinus communis L.)accessions for cadmium tolerance in relation to antioxidant systems and lipid peroxidation[J]. Environmental Science and Pollution Research, 2021, 28(39):55634-55642.doi: 10.1007/s11356-021-14844-z.
|
[28] |
Huang G R, Yin X G, Lu J N, Zhang L Q, Lin D T, Xie Y, Liu H Y, Liu C Y, Zuo J Y, Zhang X X. Dynamic QTL mapping revealed primarily the genetic structure of photosynthetic traits in castor( Ricinus communis L.)[J]. Scientific Reports, 2023, 13(1):14071.doi: 10.1038/s41598-023-41241-y.
|
[29] |
Feng X J, Jia L, Cai Y T, Guan H R, Zheng D, Zhang W X, Xiong H, Zhou H M, Wen Y, Hu Y, Zhang X M, Wang Q J, Wu F K, Xu J, Lu Y L. ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency[J]. Plant Biotechnology Journal, 2022, 20(11):2077-2088.doi: 10.1111/pbi.13889.
pmid: 35796628
|
[30] |
Liu P, Zhang C, Ma J Q, Zhang L Y, Yang B, Tang X Y, Huang L, Zhou X B, Lu K, Li J N. Genome-wide identification and expression profiling of cytokinin oxidase/dehydrogenase(CKX)genes reveal likely roles in pod development and stress responses in oilseed rape( Brassica napus L.)[J]. Genes, 2018, 9(3):168.doi: 10.3390/genes9030168.
|
[31] |
Sun Y W, Wang C M, Wang N, Jiang X Y, Mao H Z, Zhu C X, Wen F J, Wang X H, Lu Z J, Yue G H, Xu Z F, Ye J. Manipulation of auxin response factor 19 affects seed size in the woody perennial Jatropha curcas[J]. Scientific Reports, 2017, 7:40844.doi: 10.1038/srep40844.
|
[32] |
|
|
Zhang S Q, Ren L P, Wang Z, Ye Z J, Gao X H, Dong Y H, Chen Z B. Discussion on regulation of source-sink relationship and wheat yield increase from harvest index[J]. Journal of Northeast Agricultural Sciences, 2022, 47(3):21-25.
|
[33] |
黄冠荣, 殷学贵, 陆建农, 张柳琴, 刘朝裕, 张肖肖, 林海虹, 左金鹰. 蓖麻有效穗数QTL定位及候选基因鉴定[J]. 华北农学报, 2023, 38(6):36-44. doi: 10.7668/hbnxb.20194396.
|
|
Huang G R, Yin X G, Lu J N, Zhang L Q, Liu C Y, Zhang X X, Lin H H, Zuo J Y. QTL mapping and candidate gene identification of effective spike number in Ricinus communis L.[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(6):36-44.
|
[34] |
|
|
Mo J J, Hu J X, Lin X J, Zeng Y, Pang Y Y. Correlation of harvest index to main traits of yield formation in rice[J]. Hybrid Rice, 2023, 38(2):32-37.
|
[35] |
|
|
He X Y, Chen Z M, Liao Y P, Cheng Y S, Chen Y H. Heredity of rice harvest index and correlations between HI and main agronomic characters[J]. Acta Agronomica Sinica, 2006, 32(6):911-916.
|
[36] |
|
|
Li S G, Ma Y Q, Zhou K D, Li H Y. Genetic and correlation analysis of harvest index and source-sink traits in hybrid rice[J]. Southwest China Journal of Agricultural Sciences, 1998, 11(S2):148-153.
|
[37] |
|
|
Yao J B, Yao G C, Yang X M, Ma H X, Zhang P P. Inheritance of wheat harvest index and its correlations with agronomic traits[J]. Jiangsu Journal of Agricultural Sciences, 2008, 24(1):5-10.
|
[38] |
Wilmoth J C, Wang S C, Tiwari S B, Joshi A D, Hagen G, Guilfoyle T J, Alonso J M, Ecker J R, Reed J W. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation[J]. The Plant Journal, 2005, 43(1):118-130.doi: 10.1111/j.1365-313X.2005.02432.x.
|
[39] |
Okushima Y, Overvoorde P J, ARIMA K, Alonso J M, Chan A, Chang C, Ecker J R, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G X, Theologis A. Functional genomic analysis of the auxin response factor gene family members in Arabidopsis thaliana:unique and overlapping functions of arf7 and arf19[J]. The Plant Cell, 2005, 17(2):444-463.doi: 10.1105/tpc.104.028316.
|
[40] |
Li J S, Dai X H, Zhao Y D. A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis[J]. Plant Physiology, 2006, 140(3):899-908.doi: 10.1104/pp.105.070987.
|
[41] |
Fei X T, Shi Q Q, Qi Y C, Wang S J, Lei Y, Hu H C, Liu Y L, Yang T X, Wei A Z. ZbAGL11,a class D MADS-box transcription factor of Zanthoxylum bungeanum,is involved in sporophytic apomixis[J]. Horticulture Research, 2021, 8(1):23.doi: 10.1038/s41438-020-00459-x.
|
[42] |
Zalewski W, Galuszka P, Gasparis S, Orczyk W, Nadolska-Orczyk A. Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity[J]. Journal of Experimental Botany, 2010, 61(6):1839-1851.doi: 10.1093/jxb/erq052.
|
[43] |
Guseman J M, Webb K, Srinivasan C, Dardick C. DRO1 influences root system architecture in Arabidopsis and Prunus species[J]. The Plant Journal, 2017, 89(6):1093-1105.doi: 10.1111/tpj.13470.
|
[44] |
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J Z, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nature Genetics, 2013, 45(9):1097-1102.doi: 10.1038/ng.2725.
pmid: 23913002
|
[45] |
Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, Kondo M, Uga Y. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields[J]. Scientific Reports, 2014, 4:5563.doi: 10.1038/srep05563.
pmid: 24988911
|