[1] |
Wang J P, Raman H, Zhang G P, Mendham N, Zhou M X. Aluminium tolerance in barley(Hordeum vulgare L.): Physiological mechanisms,genetics and screening methods[J]. Journal of Zhejiang University Science (Life Science), 2006, 7(10): 769-787.
|
[2] |
Sade H, Meriga B, Surapu V, Gadi J, Sunita M S L, Suravajhala P, Kishor P B K. Toxicity and tolerance of aluminum in plants: Tailoring plants to suit to acid soils[J]. BioMetals, 2016, 29(2): 187-210.doi: 10.1007/s10534-016-9910-z.
doi: 10.1007/s10534-016-9910-z
pmid: 26796895
|
[3] |
doi: 10.16213/j.cnki.scjas.2006.06.045
|
|
Xiao H J, Wang Z Y. Advance on study of aluminum toxicity and plant nutrition in acid soils[J]. Southwest China Journal of Agricultural Sciences, 2006, 19(6): 1180-1188.
|
[4] |
Magalhaes J V, Liu J P, Guimarães C T, Lana U G P, Alves V M C, Wang Y H, Schaffert R E, Hoekenga O A, Piñeros M A, Shaff J E, Klein P E, Carneiro N P, Coelho C M, Trick H N, Kochian L V. A gene in the multidrug and toxic compound extrusion(MATE)family confers aluminum tolerance in Sorghum[J]. Nature Genetics, 2007, 39(9): 1156-1161.doi: 10.1038/ng2074.
doi: 10.1038/ng2074
pmid: 17721535
|
[5] |
Tang Y, Sorrells M E, Kochian L V, Garvin D F. Identification of RFLP markers linked to the barley aluminum tolerance gene Alp[J]. Crop Science, 2000, 40(3):778-782.doi: 10.2135/cropsci2000.403778x.
doi: 10.2135/cropsci2000.403778x
URL
|
[6] |
Navakode S, Weidner A, Varshney R, Lohwasser U, Scholz U, Börner A. A QTL analysis of aluminium tolerance in barley,using gene-based markers[J]. Cereal Research Communications, 2009, 37(4): 531-540.doi: 10.1556/crc.37.2009.4.6.
doi: 10.1556/crc.37.2009.4.6
URL
|
[7] |
Xue Y, Jiang L, Su N, Wang J K, Deng P, Ma J F, Zhai H Q, Wan J M. The genetic basic and fine-mapping of a stable quantitative-trait loci for aluminium tolerance in rice[J]. Planta, 2007, 227(1): 255-262.doi: 10.1007/s00425-007-0613-0.
doi: 10.1007/s00425-007-0613-0
pmid: 17721709
|
[8] |
Famoso A N, Zhao K Y, Clark R T, Tung C W, Wright M H, Bustamante C, Kochian L V, McCouch S R. Genetic architecture of aluminum tolerance in rice( Oryza sativa)determined through genome-wide association analysis and QTL mapping[J]. PLoS Genetics, 2011, 7(8): e1002221.doi: 10.1371/journal.pgen.1002221.
doi: 10.1371/journal.pgen.1002221
URL
|
[9] |
Meng L J, Wang B X, Zhao X Q, Ponce K, Qian Q, Ye G Y. Association mapping of ferrous,zinc,and aluminum tolerance at the seedling stage in Indica rice using MAGIC populations[J]. Frontiers in Plant Science, 2017, 8: 1822.doi: 10.3389/fpls.2017.01822.
doi: 10.3389/fpls.2017.01822
URL
|
[10] |
doi: 10.3969/j.issn.1002-1302.2009.03.023
|
|
Hu C, Liu Q, Long W W, Li F R, Li R G. Effects of aluminum on the seed germinating and root growth in sesame(Sesamum indicum L.)[J]. Jiangsu Agricultural Sciences, 2009, 37(3): 60-62.
|
[11] |
doi: 10.15889/j.issn.1002-1302.2010.05.065
|
|
He G H, Liu Q, Deng P, Wu Y. Effects of aluminum stress on root exudates in sesame[J]. Jiangsu Agricultural Sciences, 2010, 38(5): 117-119.
|
[12] |
doi: 10.7505/j.issn.1007-9084.2014.05.007
|
|
Sun J, Le M W, Rao Y L, Yan T X, Yan X W, Zhou H Y. Effect of aluminum stress on sesame seedling growth during germination and tolerance evaluation of sesame germplasm[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(5): 602-609.
|
[13] |
Liang J C, Sun J, Ye Y Y, Yan X W, Yan T X, Rao Y L, Zhou H Y, Le M W. QTL mapping of PEG-induced drought tolerance at the early seedling stage in sesame using whole genome re-sequencing[J]. PLoS One, 2021, 16(2): e0247681.doi: 10.1371/journal.pone.0247681.
doi: 10.1371/journal.pone.0247681
URL
|
[14] |
Wang S, Basten C J, Zeng Z B. Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh,NC[EB/OL]. [2012—02—05]. https://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm.
URL
|
[15] |
Wang L H, Xia Q J, Zhang Y X, Zhu X D, Zhu X F, Li D H, Ni X M, Gao Y, Xiang H T, Wei X, Yu J Y, Quan Z W, Zhang X R. Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map[J]. BMC Genomics, 2016, 17: 31.doi: 10.1186/s12864-015-2316-4.
doi: 10.1186/s12864-015-2316-4
pmid: 26732604
|
[16] |
Halimaa P, Lin Y F, Ahonen V H, Blande D, Clemens S, Gyenesei A, Häikiö E, Kärenlampi S O, Laiho A, Aarts M G M, Pursiheimo J P, Schat H, Schmidt H, Tuomainen M H, Tervahauta A I. Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation[J]. Environmental Science & Technology, 2014, 48(6): 3344-3353.doi: 10.1021/es4042995.
doi: 10.1021/es4042995
URL
|
[17] |
Tripathi D K, Singh S, Gaur S, Singh S, Yadav V, Liu S L, Singh V P, Sharma S, Srivastava P, Prasad S M, Dubey N K, Chauhan D K, Sahi S. Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance[J]. Frontiers in Environmental Science, 2018, 5: 86.doi: 10.3389/fenvs.2017.00086.
doi: 10.3389/fenvs.2017.00086
URL
|
[18] |
Worthington M, Perez J G, Mussurova S, Silva-Cordoba A, Castiblanco V, Cardoso Arango J A, Jones C, Fernandez-Fuentes N, Skot L, Dyer S, Tohme J, di Palma F, Arango J, Armstead I, de Vega J J. A new genome allows the identification of genes associated with natural variation in aluminium tolerance in Brachiaria grasses[J]. Journal of Experimental Botany, 2020, 72(2): 302-319.doi: 10.1093/jxb/eraa469.
doi: 10.1093/jxb/eraa469
URL
|
[19] |
Nakano Y, Kusunoki K, Hoekenga O A, Tanaka K, Iuchi S, Sakata Y, Kobayashi M, Yamamoto Y Y, Koyama H, Kobayashi Y. Genome-wide association study and genomic prediction elucidate the distinct genetic architecture of aluminum and proton tolerance in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2020, 11: 405.doi: 10.3389/fpls.2020.00405.
doi: 10.3389/fpls.2020.00405
pmid: 32328080
|
[20] |
Ghimire B, Saminathan T, Bodunrin A, Abburi V L, Kshetry A O, Shinde S, Nimmakayala P, Reddy U K. Genome-wide association study of natural variation in Arabidopsis exposed to acid mine drainage toxicity and validation of associated genes with reverse genetics[J]. Plants, 2021, 10(2):191.doi: 10.3390/plants10020191.
doi: 10.3390/plants10020191
URL
|
[21] |
Kusunoki K, Nakano Y, Tanaka K, Sakata Y, Koyama H, Kobayashi Y. Transcriptomic variation among six Arabidopsis thaliana accessions identified several novel genes controlling aluminium tolerance[J]. Plant,Cell & Environment, 2017, 40(2): 249-263.doi: 10.1111/pce.12866.
doi: 10.1111/pce.12866
|
[22] |
Mangeon A, Pardal R, Menezes-Salgueiro A D, Duarte G L, de Seixas R, Cruz F P, Cardeal V, Magioli C, Ricachenevsky F K, Margis R, Sachetto-Martins G. AtGRP3 is implicated in root size and aluminum response pathways in Arabidopsis[J]. PLoS One, 2016, 11(3): e0150583.doi: 10.1371/journal.pone.0150583.
doi: 10.1371/journal.pone.0150583
URL
|
[23] |
Ojeda-Rivera J O, Oropeza-Aburto A, Herrera-Estrella L. Dissection of root transcriptional responses to low pH,aluminum toxicity and iron excess under pi-limiting conditions in Arabidopsis wild-type and stop1 seedlings[J]. Frontiers in Plant Science, 2020, 11: 01200.doi: 10.3389/fpls.2020.01200.
doi: 10.3389/fpls.2020.01200
pmid: 33133111
|
[24] |
Yang L B, Fan T T, Guan L X, Ren Y B, Han Y, Liu Q, Liu Y S, Cao S Q. CMDH4 encodes a protein that is required for lead tolerance in Arabidopsis[J]. Plant and Soil, 2017, 412(1/2): 317-330.doi: 10.1007/s11104-016-3078-8.
doi: 10.1007/s11104-016-3078-8
URL
|
[25] |
Zandalinas S I, Sengupta S, Burks D, Azad R K, Mittler R. Identification and characterization of a core set of ROS wave-associated transcripts involved in the systemic acquired acclimation response of Arabidopsis to excess light[J]. The Plant Journal, 2019, 98(1): 126-141.doi: 10.1111/tpj.14205.
doi: 10.1111/tpj.14205
pmid: 30556340
|
[26] |
Richards K D, Schott E J, Sharma Y K, Davis K R, Gardner R C. Aluminum induces oxidative stress genes in Arabidopsis thaliana[J]. Plant Physiology, 1998, 116(1): 409-418.doi: 10.1104/pp.116.1.409.
doi: 10.1104/pp.116.1.409
pmid: 9449849
|
[27] |
Papdi C, Ábrahám E, Joseph M P, Popescu C, Koncz C, Szabados L. Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system[J]. Plant Physiology, 2008, 147(2): 528-542.doi: 10.1104/pp.108.116897.
doi: 10.1104/pp.108.116897
URL
|
[28] |
Yamaji N, Huang C F, Nagao S, Yano M, Sato Y, Nagamura Y, Ma J F. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J]. The Plant Cell, 2009, 21(10): 3339-3349.doi: 10.1105/tpc.109.070771.
doi: 10.1105/tpc.109.070771
pmid: 19880795
|
[29] |
López-Galiano M J, González-Hernández A I, Crespo-Salvador O, Rausell C, Real M D, Escamilla M,Camañes G,García-Agustín P,González-Bosch C,García-Robles I. Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in Solanaceae plants[J]. Plant Cell Reports,2018,37(1): 167-176.doi: 10.1007/s00299-017-2219-8.
doi: 10.1007/s00299-017-2219-8
|
[30] |
Ma H X, Bai G H, Carver B F, Zhou L L. Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66[J]. Theoretical and Applied Genetics, 2005, 112(1): 51-57.doi: 10.1007/s00122-005-0101-5.
doi: 10.1007/s00122-005-0101-5
pmid: 16189660
|
[31] |
Cai Z D, Cheng Y B, Xian P Q, Lin R B, Xia Q J, He X K, Liang Q W, Lian T X, Ma Q B, Nian H. Fine-mapping QTLs and the validation of candidate genes for aluminum tolerance using a high-density genetic map[J]. Plant and Soil, 2019, 444(1/2): 119-137.doi: 10.1007/s11104-019-04261-0.
doi: 10.1007/s11104-019-04261-0
URL
|
[32] |
王瑞莉, 王刘艳, 叶桑, 郜欢欢, 雷维, 吴家怡, 袁芳, 孟丽姣, 唐章林, 李加纳, 周清元, 崔翠. 铝毒胁迫下甘蓝型油菜种子萌发期相关性状的QTL定位[J]. 作物学报, 2020, 46(6): 832-843.doi: 10.3724/SP.J.1006.2020.94154.
doi: 10.3724/SP.J.1006.2020.94154
|
|
Wang R L, Wang L Y, Ye S, Gao H H, Lei W, Wu J Y, Yuan F, Meng L J, Tang Z L, Li J N, Zhou Q Y, Cui C. QTL mapping of seed germination-related traits in Brassica napus L.under aluminum toxicity stress[J]. Acta Agronomica Sinica, 2020, 46(6): 832-843.
doi: 10.3724/SP.J.1006.2020.94154
URL
|
[33] |
Kobayashi Y, Furuta Y, Ohno T, Hara T, Koyama H. Quantitative trait loci controlling aluminium tolerance in two accessions of Arabidopsis thaliana (Landsberg erecta and Cape Verde Islands)[J]. Plant,Cell & Environment, 2005, 28(12):1516-1524.doi: 10.1111/j.1365-3040.2005.01388.x.
doi: 10.1111/j.1365-3040.2005.01388.x
|
[34] |
Sharma A D, Sharma H, Lightfoot D A. The genetic control of tolerance to aluminum toxicity in the Essex by Forrest recombinant inbred line population[J]. Theoretical and Applied Genetics, 2011, 122(4): 687-694.doi: 10.1007/s00122-010-1478-3.
doi: 10.1007/s00122-010-1478-3
pmid: 21060987
|
[35] |
Kochian L V, Piñeros M A, Liu J P, Magalhaes J V. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance[J]. Annual Review of Plant Biology, 2015, 66: 571-598.doi: 10.1146/annurev-arplant-043014-114822.
doi: 10.1146/annurev-arplant-043014-114822
pmid: 25621514
|
[36] |
Liu J P, Piñeros M A, Kochian L V,. The role of aluminum sensing and signaling in plant aluminum resistance[J]. Journal of Integrative Plant Biology,2014,56(3): 221-230.doi: 10.1111/jipb.12162.
doi: 10.1111/jipb.12162
|
[37] |
丁戈, 黄杨, 陈伦林, 李书宇, 宋来强, 熊洁. 基于转录组测序的铝胁迫下甘蓝型油菜新内参基因的发掘与引物开发[J]. 华北农学报, 2021, 36(1): 1-9. doi: 10.7668/hbnxb.20191565.
doi: 10.7668/hbnxb.20191565
|
|
Ding G, Huang Y, Chen L L, Li S Y, Song L Q, Xiong J. RNA-seq based discovery of new reference genes and primers in Brassica napus under aluminum stress[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(1): 1-9.
|
[38] |
Daspute A A, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda S K, Koyama H. Transcriptional regulation of aluminum-tolerance genes in higher plants: Clarifying the underlying molecular mechanisms[J]. Frontiers in Plant Science, 2017, 8: 1358.doi: 10.3389/fpls.2017.01358.
doi: 10.3389/fpls.2017.01358
pmid: 28848571
|
[39] |
de Michele R, Vurro E, Rigo C, Costa A, Elviri L, di Valentin M, Careri M, Zottini M, Sanità di Toppi L, Lo Schiavo F. Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures[J]. Plant Physiology, 2009, 150(1): 217-228.doi: 10.1104/pp.108.133397.
doi: 10.1104/pp.108.133397
URL
|