[1] |
Khattak J Z K, Torp A M, Andersen S B. A genetic linkage map of Spinacia oleracea and localization of a sex determination locus[J]. Euphytica, 2006, 148(3):311-318.doi: 10.1007/s10681-005-9031-1.
|
[2] |
Cai X F, Sun X P, Xu C X, Sun H H, Wang X L, Ge C H, Zhang Z H, Wang Q X, Fei Z J, Jiao C, Wang Q H. Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits[J]. Nature Communications, 2021, 12(1):7246.doi: 10.1038/s41467-021-27432-z.
pmid: 34903739
|
[3] |
Huang H, Yan L, Zhang Y, Raza A, Liu Z, Lü Y, Ding X Y, Cheng Y, Zou X L. Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed( Brassica napus L.) seedlings[J]. Plant Growth Regulation, 2021, 94(2):161-170.doi: 10.1007/s10725-021-00700-0.
|
[4] |
Raza H, Khan M R, Zafar S A, Kirch H H, Bartles D. Aldehyde dehydrogenase 3I1 gene is recruited in conferring multiple abiotic stress tolerance in plants[J]. Plant Biology, 2022, 24(1):85-94.doi: 10.1111/plb.13337.
|
[5] |
罗健东, 邱梦青, 周慧敏, 解为玮, 黄海鑫, 刘洁琪, 张梓敏, 徐健, 陈程杰, 何业华, 刘朝阳. 菠萝 AcZFP1的克隆及其在低温胁迫下的功能分析[J]. 园艺学报, 2024, 51(3):495-508.doi: 10.16420/j.issn.0513-353x.2023-0089.
|
|
Luo J D, Qiu M Q, Zhou H M, Xie W W, Huang H X, Liu J Q, Zhang Z M, Xu J, Chen C J, He Y H, Liu C Y. Cloning and functional analysis of pineapple AcZFP1 gene under low temperature stress[J]. Acta Horticulturae Sinica, 2024, 51(3):495-508.
|
[6] |
Fang C X, Zhang P L, Li L L, Yang L K, Mu D, Yan X, Li Z, Lin W X. Serine hydroxymethyltransferase localised in the endoplasmic reticulum plays a role in scavenging H 2O 2 to enhance rice chilling tolerance[J]. BMC Plant Biology, 2020, 20(1):236.doi: 10.1186/s12870-020-02446-9.
|
[7] |
Wang Z Y, Zhang Y M, Hu H F, Chen L, Zhang H F, Chen R G. CabHLH79 acts upstream of CaNAC035 to regulate cold stress in pepper[J]. International Journal of Molecular Sciences, 2022, 23(5):2537.doi: 10.3390/ijms23052537.
|
[8] |
Su W H, Ren Y J, Wang D J, Su Y C, Feng J F, Zhang C, Tang H C, Xu L P, Muhammad K, Que Y X. The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation[J]. BMC Genomics, 2020, 21(1):521.doi: 10.1186/s12864-020-06929-9.
pmid: 32727370
|
[9] |
Cai B B, Li Q, Xu Y C, Yang L, Bi H G, Ai X Z. Genome-wide analysis of the fructose 1,6-bisphosphate aldolase(FBA)gene family and functional characterization of FBA7 in tomato[J]. Plant Physiology and Biochemistry, 2016, 108:251-265.doi: 10.1016/j.plaphy.2016.07.019.
|
[10] |
|
|
Li Y, Kong L Y, Li C Y, Li X, Dai P H, Liu X D. Molecular cloning of GbCBF6 gene and its expression in cotton(Gossypium barbadense L.)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(10):1949-1955.
|
[11] |
Kaye C, Neven L, Hofig A, Li Q B, Haskell D, Guy C. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco[J]. Plant Physiology, 1998, 116(4):1367-1377.doi: 10.1104/pp.116.4.1367.
pmid: 9536054
|
[12] |
Fan W J, Zhang M, Zhang H X, Zhang P. Improved tolerance to various abiotic stresses in transgenic sweet potato( Ipomoea batatas)expressing spinach betaine aldehyde dehydrogenase[J]. PLoS One, 2012, 7(5):e37344.doi: 10.1371/journal.pone.0037344.
|
[13] |
Krishna P, Sacco M, Cherutti J F, Hill S. Cold-induced accumulation of hsp90 transcripts in Brassica napus[J]. Plant Physiology, 1995, 107(3):915-923.doi: 10.1104/pp.107.3.915.
pmid: 12228411
|
[14] |
Zhao J Y, Missihoun T D, Bartels D. The role of Arabidopsis aldehyde dehydrogenase genes in response to high temperature and stress combinations[J]. Journal of Experimental Botany, 2017, 68(15):4295-4308.doi: 10.1093/jxb/erx194.
|
[15] |
Krčková Z, Brouzdová J, Daněk M, Kocourková D, Rainteau D, Ruelland E, Valentová O, Pejchar P, Martinec J. Arabidopsis non-specific phospholipase C1:characterization and its involvement in response to heat stress[J]. Frontiers in Plant Science, 2015,6:928.doi: 10.3389/fpls.2015.00928.
|
[16] |
Poonia A K, Mishra S K, Sirohi P, Chaudhary R, Kanwar M, Germain H, Chauhan H. Overexpression of wheat transcription factor(TaHsfA6b)provides thermotolerance in barley[J]. Planta, 2020, 252(4):53.doi: 10.1007/s00425-020-03457-4.
|
[17] |
Casaretto J A, El-Kereamy A, Zeng B, Stiegelmeyer S M, Chen X, Bi Y M, Rothstein S J. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance[J]. BMC Genomics, 2016,17:312.doi: 10.1186/s12864-016-2659-5.
|
[18] |
|
|
Dong L H, Fan R, Chen Y X, Zhai G Q, Zhang L, Li W H. Cloning and functional analysis of maize heat shock transcription factor gene ZmHSF05[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(8):1294-1302.
|
[19] |
Qi C D, Lin X P, Li S T, Liu L, Wang Z R, Li Y, Bai R Y, Xie Q, Zhang N, Ren S X, Zhao B, Li X D, Fan S X, Guo Y D. SoHSC70 positively regulates thermotolerance by alleviating cell membrane damage,reducing ROS accumulation,and improving activities of antioxidant enzymes[J]. Plant Science, 2019, 283:385-395.doi: 10.1016/j.plantsci.2019.03.003.
|
[20] |
Li Y, Zhang H, Zhang Y X, Liu Y S, Li Y Y, Tian H D, Guo S Y, Sun M H, Qin Z, Dai S J. Genome-wide identification and expression analysis reveals spinach brassinosteroid-signaling kinase(BSK)gene family functions in temperature stress response[J]. BMC Genomics, 2022, 23(1):453.doi: 10.1186/s12864-022-08684-5.
|
[21] |
Collins K, Zhao K, Jiao C, Xu C X, Cai X F, Wang X L, Ge C H, Dai S J, Wang Q X, Wang Q H, Fei Z J, Zheng Y. SpinachBase:a central portal for spinach genomics[J]. Database, 2019,2019:baz072.doi: 10.1093/database/baz072.
|
[22] |
Sharif R, Raza A, Chen P, Li Y H, El-Ballat E M, Rauf A, Hano C, El-Esawi M A. HD-ZIP gene family:potential roles in improving plant growth and regulating stress-responsive mechanisms in plants[J]. Genes, 2021, 12(8):1256.doi: 10.3390/genes12081256.
|
[23] |
Naranjo-Arcos M, Srivastava M, Deligne F, Bhagat P K, Mansi M, Sadanandom A, Vert G. SUMO/deSUMOylation of the BRI1 brassinosteroid receptor modulates plant growth responses to temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(4):e2217255120.doi: 10.1073/pnas.2217255120.
|
[24] |
Huang J Y, Zhao X B, Bürger M, Chory J, Wang X C. The role of ethylene in plant temperature stress response[J]. Trends in Plant Science, 2023, 28(7):808-824.doi: 10.1016/j.tplants.2023.03.001.
pmid: 37055243
|
[25] |
Yin Y L, Qin K Z, Song X W, Zhang Q H, Zhou Y H, Xia X J, Yu J Q. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato[J]. Plant & Cell Physiology, 2018, 59(11):2239-2254.doi: 10.1093/pcp/pcy146.
|
[26] |
Yao Y, He R J, Xie Q L, Zhao X H, Deng X M, He J B, Song L L, He J, Marchant A, Chen X Y, Wu A M. ETHYLENE RESPONSE FACTOR 74(ERF74)plays an essential role in controlling a respiratory burst oxidase homolog D(RbohD)-dependent mechanism in response to different stresses in Arabidopsis[J]. The New Phytologist, 2017, 213(4):1667-1681.doi: 10.1111/nph.14278.
|
[27] |
Wang X Y, Zhuang L L, Shi Y, Huang B R. Up-regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fescue and Arabidopsis[J]. International Journal of Molecular Sciences, 2017, 18(9):1981.doi: 10.3390/ijms18091981.
|
[28] |
Yu H S, Kong X F, Huang H, Wu W W, Park J, Yun D J, Lee B H, Shi H Z, Zhu J K. STCH 4/REIL2 confers cold stress tolerance in Arabidopsis by promoting rRNA processing and CBF protein translation[J]. Cell Reports, 2020, 30(1):229-242.e5.doi: 10.1016/j.celrep.2019.12.012.
|
[29] |
Duran Garzon C, Lequart M, Rautengarten C, Bassard S, Sellier-Richard H, Baldet P, Heazlewood J L, Gibon Y, Domon J M, Giauffret C, Rayon C. Regulation of carbon metabolism in two maize sister lines contrasted for chilling tolerance[J]. Journal of Experimental Botany, 2020, 71(1):356-369.doi: 10.1093/jxb/erz421.
pmid: 31557299
|
[30] |
Shen J Z, Zhang D Y, Zhou L, Zhang X Z, Liao J R, Duan Y, Wen B, Ma Y C, Wang Y H, Fang W P, Zhu X J. Transcriptomic and metabolomic profiling of Camellia sinensis L.cv.Suchazao exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways[J]. Tree Physiology, 2019, 39(9):1583-1599.doi: 10.1093/treephys/tpz059.
|
[31] |
Khakimov B, Jespersen B M, Engelsen S B. Comprehensive and comparative metabolomic profiling of wheat,barley,oat and rye using gas chromatography-mass spectrometry and advanced chemometrics[J]. Foods, 2014, 3(4):569-585.doi: 10.3390/foods3040569.
pmid: 28234338
|
[32] |
Wei J P, Zheng G Q, Yu X W, Liu S S, Dong X Y, Cao X D, Fang X L, Li H, Jin J J, Mi W B, Liu Z G. Comparative transcriptomics and proteomics analyses of leaves reveals a freezing stress-responsive molecular network in winter rapeseed( Brassica rapa L.)[J]. Frontiers in Plant Science, 2021,12:664311.doi: 10.3389/fpls.2021.664311.
|
[33] |
El-Kereamy A, Bi Y M, Ranathunge K, Beatty P H, Good A G, Rothstein S J. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism[J]. PLoS One, 2012, 7(12):e52030.doi: 10.1371/journal.pone.0052030.
|
[34] |
Chen L, Liang Z J, Xie S Y, Liu W R, Wang M, Yan J Q, Yang S G, Jiang B, Peng Q W, Lin Y E. Responses of differential metabolites and pathways to high temperature in cucumber anther[J]. Frontiers in Plant Science, 2023,14:1131735.doi: 10.3389/fpls.2023.1131735.
|
[35] |
Wang J Y, Yuan B, Xu Y, Huang B R. Differential responses of amino acids and soluble proteins to heat stress associated with genetic variations in heat tolerance for hard fescue[J]. Journal of the American Society for Horticultural Science, 2018, 143(1):45-55.doi: 10.21273/jashs04246-17.
|
[36] |
Zhu X L, Zhang S B, Li X, Wang X Q, Li Z D, Zhu X Y, Liu X X, Li H X, Zhang J, Chen X L. Integrative analysis of high temperature-induced transcriptome and metabolome alterations in the leaves of five raspberry( Rubus ideaus L.) cultivars[J]. Environmental and Experimental Botany, 2022,203:105038.doi: 10.1016/j.envexpbot.2022.105038.
|
[37] |
Davik J, Koehler G, From B, Torp T, Rohloff J, Eidem P, Wilson R C, Sønsteby A, Randall S K, Alsheikh M. Dehydrin,alcohol dehydrogenase,and central metabolite levels are associated with cold tolerance in diploid strawberry( Fragaria spp.)[J]. Planta, 2013, 237(1):265-277.doi: 10.1007/s00425-012-1771-2.
pmid: 23014928
|
[38] |
Zhu Q D, Han Y D, Yang W T, Zhu H, Li G T, Xu K, Long M X. Genome-wide identification and characterization of ADH gene family and the expression under different abiotic stresses in tomato( Solanum lycopersicum L.)[J]. Frontiers in Genetics, 2023,14:1186192.doi: 10.3389/fgene.2023.1186192.
|
[39] |
Liu Z S, Pan X J, Wang C L, Yun F H, Huang D J, Yao Y D, Gao R, Ye F J, Liu X J, Liao W B. Genome-wide identification and expression analysis of serine hydroxymethyltransferase(SHMT)gene family in tomato( Solanum lycopersicum)[J]. PeerJ, 2022,10:e12943.doi: 10.7717/peerj.12943.
|
[40] |
Chen Z, Chen M, Xu Z S, Li L C, Chen X P, Ma Y Z. Characteristics and expression patterns of the aldehyde dehydrogenase(ALDH)gene superfamily of foxtail millet( Setaria italica L.)[J]. PLoS One, 2014, 9(7):e101136.doi: 10.1371/journal.pone.0101136.
|
[41] |
Guo J B, Sun W, Liu H Y, Chi J L, Odiba A S, Li G C, Jin L P, Xin C H. Aldehyde dehydrogenase plays crucial roles in response to lower temperature stress in Solanum tuberosum and Nicotiana benthamiana[J]. Plant Science, 2020,297:110525.doi: 10.1016/j.plantsci.2020.110525.
|