[1] |
|
|
Zhang L, Wu J C, Zhang H Y, Gong G Y, Liu T J, Zhang J, Xu Y. Advances in functional genes for important traits in watermelon[J]. Acta Horticulturae Sinica, 2023, 50(12):2748-2764.
doi: 10.16420/j.issn.0513-353x.2022-1218
|
[2] |
|
|
Chen S, Duan H M, Li S, Yang S Y, Zhou H, Gao Q H. Effects of three strains of Bacillus and their mixed fermentation broth on the growth of watermelon seedlings[J]. China Cucurbits and Vegetables, 2024, 37(2):46-51.
|
[3] |
Ghani M I, Yi B L, Rehmani M S, Wei X, Ali Siddiqui J, Fan R D, Liu Y J, El-Sheikh M A, Chen X, Ahmad P. Potential of melatonin and Trichoderma harzianum inoculation in ameliorating salt toxicity in watermelon:insights into antioxidant system,leaf ultrastructure,and gene regulation[J]. Plant Physiology and Biochemistry, 2024,211:108639.doi: 10.1016/j.plaphy.2024.108639.
|
[4] |
|
|
Gao B W, Sun D X, Yuan G P, An G L, Li W H, Liu J P, Zhu Y C. Identification of salt tolerance of 121 watermelon(Citrullus lanatus L.) germplasm resources[J]. Journal of Fruit Science, 2022, 39(9):1597-1606.
|
[5] |
|
|
He W, Pan H L, Pan T F, Tang H R, Wang X R, Pan D M. Research progress on the interaction between scion and rootstock in fruit trees[J]. Acta Horticulturae Sinica, 2017, 44(9):1645-1657.
doi: 10.16420/j.issn.0513-353x.2017-0147
|
[6] |
Wang Y, Zhou J Q, Wen W X, Sun J, Shu S, Guo S R. Transcriptome and proteome analysis identifies salt stress response genes in bottle gourd rootstock-grafted watermelon seedlings[J]. Agronomy, 2023, 13(3):618.doi: 10.3390/agronomy13030618.
|
[7] |
Hu Z, Wang F S, Yu H, Zhang M M, Jiang D, Huang T J, Xiang J S, Zhu S P, Zhao X C. Effects of scion-rootstock interaction on Citrus fruit quality related to differentially expressed small RNAs[J]. Scientia Horticulturae, 2022,298:110974.doi: 10.1016/j.scienta.2022.110974.
|
[8] |
Zhou Z, Yuan Y Q, Wang K T, Wang H J, Huang J Q, Yu H, Cui X. Rootstock-scion interactions affect fruit flavor in grafted tomato[J]. Horticultural Plant Journal, 2022, 8(4):499-510.doi: 10.1016/j.hpj.2022.01.001.
|
[9] |
|
|
Chen D S, Wang H X, Wang Z Y, Huang J, Chen Z G. Effects of five rootstocks on growth,fruit quality and yield of mini-water-melon in Beijing[J]. China Cucurbits and Vegetables, 2023, 36(5):66-71.
|
[10] |
|
|
Cao S Y, Wang Y F, Su W Y, Zhang L, Zhang Y H, Xu J Q. Research progress on functions of calmodulin-like proteins in processes of plant growth and developments and stresses[J]. Plant Physiology Journal, 2018, 54(10):1517-1526.
|
[11] |
Jing X, Cai C J, Fan S H, Luo H Y. Physiological response characteristics of moso bamboo under drought stress based on calcium signal[J]. Forests, 2021, 12(12):1699.doi: 10.3390/f12121699.
|
[12] |
Liu Y, Xu C J, Zhu Y F, Zhang L N, Chen T Y, Zhou F, Chen H, Lin Y J. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice[J]. Journal of Integrative Plant Biology, 2018, 60(2):173-188.doi: 10.1111/jipb.12614.
|
[13] |
Tao X C, Lu Y T. Loss of AtCRK1 gene function in Arabidopsis thaliana decreases tolerance to salt[J]. Journal of Plant Biology, 2013, 56(5):306-314.doi: 10.1007/s12374-012-0352-z.
|
[14] |
Fu X, Lü C Y, Zhang Y Y, Ai X Z, Bi H G. Comparative transcriptome analysis of grafting to improve chilling tolerance of cucumber[J]. Protoplasma, 2023, 260(5):1349-1364.doi: 10.1007/s00709-023-01854-6.
pmid: 36949344
|
[15] |
|
|
Zhang X Y. Mechanism in effects of grafting onto Artemisia annua on aphid resistance in chrysanthemum[D]. Taian: Shandong Agricultural University,2020.
|
[16] |
黄金艳. 薄皮甜瓜嫁接优势的生理机制与蛋白质组学研究[D]. 南宁: 广西大学, 2020.
|
|
Huang J Y. Physiological mechanism of grafting superiority of thin-skinned melon and protein genomics[D]. Nanning: Guangxi University, 2020.
|
[17] |
Li H, Guo Y L, Lan Z X, Zhang Z X, Ahammed G J, Chang J J, Zhang Y, Wei C H, Zhang X. Melatonin antagonizes ABA action to promote seed germination by regulating Ca 2+efflux and H 2O 2 accumulation[J]. Plant Science, 2021,303:110761.doi: 10.1016/j.plantsci.2020.110761.
|
[18] |
|
|
Zhang T. Study on the effect of supplementary light on inhibiting tomato flower stalk shedding through calcium signal[D]. Shenyang: Shenyang Agricultural University,2023.
|
[19] |
Hossain M S, Li J, Sikdar A, Hasanuzzaman M, Uzizerimana F, Muhammad I, Yuan Y H, Zhang C J, Wang C Y, Feng B L. Exogenous melatonin modulates the physiological and biochemical mechanisms of drought tolerance in Tartary buckwheat( Fagopyrum tataricum(L.)gaertn)[J]. Molecules, 2020, 25(12):2828.doi: 10.3390/molecules25122828.
|
[20] |
Durian G, Sedaghatmehr M, Matallana-Ramirez L P, Schilling S M, Schaepe S, Guerra T, Herde M, Witte C P, Mueller-Roeber B, Schulze W X, Balazadeh S, Romeis T. Calcium-dependent protein kinase CPK1 controls cell death by in vivo phosphorylation of senescence master regulator ORE1[J]. The Plant Cell, 2020, 32(5):1610-1625.doi: 10.1105/tpc.19.00810.
pmid: 32111670
|
[21] |
张悦婧, 桑鹤天, 王涵琦, 石珍珍, 李丽, 王馨, 孙坤, 张继, 冯汉青. 植物对非生物胁迫系统性反应中信号传递的研究进展[J]. 植物学报, 2024, 59(1):122-133.doi: 10.11983/CBB23063.
|
|
Zhang Y J, Sang H T, Wang H Q, Shi Z Z, Li L, Wang X, Sun K, Zhang J, Feng H Q. Research progress of plant signaling in systemic responses to abiotic stresses[J]. Bulletin of Botany, 2024, 59(1):122-133.
doi: 10.11983/CBB23063
|
[22] |
Cheng H K, Pan G Y, Zhou N, Zhai Z K, Yang L Q, Zhu H F, Cui X, Zhao P Y, Zhang H F, Li S J, Yang B, Jiang Y Q. Calcium-dependent Protein Kinase 5(CPK5)positively modulates drought tolerance through phosphorylating ABA-responsive element binding factors in oilseed rape( Brassica napus L.)[J]. Plant Science, 2022,315:111125.doi: 10.1016/j.plantsci.2021.111125.
|
[23] |
|
|
Ma C. Studies on the involvement of the Ca2+/CPKs in melatonin-regulated low temperature tolerance of cucumber seedlings[D]. Lanzhou: Northwest Normal University, 2023.
|
[24] |
|
|
Liu J J. The research of the conduction resistance physiological mechanisms and effect on yield quality in grafting flue-cured tobacco[D]. Zhengzhou: Henan Agricultural University,2013.
|