[1] |
|
|
Xie W, Chen H G, Zhao C, Gong X J, Zhou X. Recent progress in understanding the bioactivity and mechanism of action of Lycium barbarum polysaccharide[J]. Food Science, 2021, 42(5):349-359.
|
[2] |
|
|
Li M Z, Liu Z G. Application of omics technology in Lycium ruthenicum resources[J]. Chinese Traditional and Herbal Drugs, 2023, 54(1):272-282.
|
[3] |
Gangappa S N, Botto J F. The multifaceted roles of HY5 in plant growth and development[J]. Molecular Plant, 2016, 9(10):1353-1365.doi: 10.1016/j.molp.2016.07.002.
pmid: 27435853
|
[4] |
Yoon M K, Shin J, Choi G, Choi B S. Intrinsically unstructured N-terminal domain of bZIP transcription factor HY5[J]. Proteins, 2006, 65(4):856-866.doi: 10.1002/prot.21089.
|
[5] |
Xiao Y T, Chu L, Zhang Y M, Bian Y T, Xiao J H, Xu D Q. HY5:a pivotal regulator of light-dependent development in higher plants[J]. Frontiers in Plant Science, 2022,12:800989.doi: 10.3389/fpls.2021.800989.
|
[6] |
|
|
Zhao Y N, Zhang H L, Zhang Z H, Liu J, Zhang J P. The regulatory role of transcription factor HY5 in plant anthocyanin synthesis[J]. Journal of Plant Genetic Resources, 2022, 23(3):670-677.
|
[7] |
Zhang L Y, Jiang X C, Liu Q Y, Ahammed G J, Lin R, Wang L Y, Shao S J, Yu J Q, Zhou Y H. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway[J]. Plant,Cell & Environment, 2020, 43(11):2712-2726.doi: 10.1111/pce.13868.
|
[8] |
|
|
Li X M. Effect of HY5 on carotenoid synthesis in tomato fruit[D]. Hangzhou: Zhejiang University,2020.
|
[9] |
An J P, Qu F J, Yao J F, Wang X N, You C X, Wang X F, Hao Y J. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple[J]. Horticulture Research, 2017,4:17023.doi: 10.1038/hortres.2017.23.
|
[10] |
Liu W J, Wang Y C, Sun J J, Jiang H Y, Xu H F, Wang N, Jiang S H, Fang H C, Zhang Z Y, Wang Y L, Chen X S. MdMYBDL1 employed by MdHY5 increases anthocyanin accumulation via repression of MdMYB16/308 in apple[J]. Plant Science, 2019, 283:32-40.doi: 10.1016/j.plantsci.2019.01.016.
|
[11] |
Ranjan A, Michael R, Gautam S, Trivedi P K. HY5-dependent light-mediated regulation of galactinol synthase gene, AtGolS1,modulates galactinol biosynthesis in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2024,695:149423.doi: 10.1016/j.bbrc.2023.149423.
|
[12] |
Choi D, Kim S H, Choi D M, Moon H, Kim J I, Huq E, Kim D.H. ELONGATED HYPOCOTYL 5 interacts with HISTONE DEACETYLASE 9 to suppress glucosinolate biosynthesis in Arabidopsis[J]. Plant Physiology, 2024, 196(2):1340-1355.doi: 10.1093/plphys/kiae284.
|
[13] |
Cao Y L, Li Y L, Fan Y F, Li Z, Yoshida K, Wang J Y, Ma X K, Wang N, Mitsuda N, Kotake T, Ishimizu T, Tsai K C, Niu S C, Zhang D Y, Sun W H, Luo Q, Zhao J H, Yin Y, Zhang B, Wang J Y, Qin K, An W, He J, Dai G L, Wang Y J, Shi Z G, Jiao E N, Wu P J, Liu X D, Liu B, Liao X Y, Jiang Y T, Yu X, Hao Y, Xu X Y, Zou S Q, Li M H, Hsiao Y Y, Lin Y F, Liang C K, Chen Y Y, Wu W L, Lu H C, Lan S R, Wang Z W, Zhao X, Zhong W Y, Yeh C M, Tsai W C, Van de Peer Y, Liu Z J. Wolfberry genomes and the evolution of Lycium(Solanaceae)[J]. Communications Biology, 2021, 4(1):671.doi: 10.1038/s42003-021-02152-8.
|
[14] |
Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J,Liu, Y L, Feng J T, Chen H,He, Y H, Xia R. TBtools-Ⅱ:a "one for all,all for one" bioinformatics platform for biological big-data mining[J]. Molecular Plant, 2023, 16(11):1733-1742.doi: 10.1016/j.molp.2023.09.010.
|
[15] |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729.doi: 10.1093/molbev/mst197.
|
[16] |
|
|
Li F Y, Xia X X, Wu M J, Hong J D, Cheng L J. Response of Eucalyptus grandis EgrCIN1 to abiotic stress[J]. Journal of Zhejiang A&F University, 2022, 39(6):1194-1202.
|
[17] |
Liu Y L, Zeng S H, Sun W, Wu M, Hu W M, Shen X F, Wang Y. Comparative analysis of carotenoid accumulation in two goji( Lycium barbarum L.and L. ruthenicum Murr.)fruits[J]. BMC Plant Biology, 2014,14:269.doi: 10.1186/s12870-014-0269-4.
|
[18] |
Cluis C P, Mouchel C F, Hardtke C S. The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways[J]. The Plant Journal, 2004, 38(2):332-347.doi: 10.1111/j.1365-313X.2004.02052.x.
|
[19] |
|
|
Li H F, Wang X F, Ran K, He P, Wang H B, Li L G. Expression and protein interaction analysis of light responsive bZIP transcription factor MdHY5[J]. Scientia Agricultura Sinica, 2014, 47(21):4318-4327.
|
[20] |
Burman N, Bhatnagar A, Khurana J P. OsbZIP48,a HY5 transcription factor ortholog,exerts pleiotropic effects in light-regulated development[J]. Plant Physiology, 2018, 176(2):1262-1285.doi: 10.1104/pp.17.00478.
pmid: 28775143
|
[21] |
Li C H, Liu Y D, Liu X T, Mai K K K, Li J X, Guo X R, Zhang C, Li H, Kang B H, Hwang I, Lu H. Chloroplast thylakoid ascorbate peroxidase PtotAPX plays a key role in chloroplast development by decreasing hydrogen peroxide in Populus tomentosa[J]. Journal of Experimental Botany, 2021, 72(12):4333-4354.doi: 10.1093/jxb/erab173.
|
[22] |
|
|
Zhong X L, Wang K, Cai X, Zhang J, Tan G F, Meng P H. Cloning and expression profiles analysis of light responsive transcription factor AgHY5 under different light in Apium gravelens[J]. Plant Physiology Journal, 2023, 59(3):653-662.
|
[23] |
Zhao L J, Fan P F, Wang Y L, Xu N N, Zhang M J, Chen M Y, Zhang M Y, Dou J L, Liu D M, Niu H H, Zhu H Y, Hu J B, Sun S R, Yang L M, Yang S. ELONGATED HYPOTCOTYL5 and SPINE BASE SIZE1 together mediate light-regulated spine expansion in cucumber[J]. Plant Physiology, 2024, 195(1):552-565.doi: 10.1093/plphys/kiae027.
pmid: 38243383
|
[24] |
|
|
Zhao R. Cloning and functional analysis of FvHY5 gene in Fragaria vesca[D]. Shenyang: Shenyang Agricultural University,2020.
|
[25] |
Jin J J, Sun W C, Wu J Y, Fang Y, Li X C, Ma L, Liu L J, Zeng R. Hypocotyl elongation based on HY5 transcription factor in cold resistant winter rapeseed( Brassica napus L.)[J]. Oil Crop Science, 2022, 7(1):40-52.doi: 10.1016/j.ocsci.2022.02.005.
|
[26] |
|
|
Ma Y, Yang Z X, Dong D, Li S W, Chao Y H, Xu L X. Cloning,subcellular localization and autonomous transcriptional activation testing of transcription factors ZjHY5 in Zoysia japonica[J]. Acta Agrestia Sinica, 2022, 30(3):560-567.
|
[27] |
Xian B, Chen C, Wang J, Chen J, Wu Q H, Ren C X, Pei J. Cloning and expression analysis of HY5 transcription factor gene of safflower in response to light signal[J]. Biotechnology and Applied Biochemistry, 2023, 70(2):509-517.doi: 10.1002/bab.2373.
|
[28] |
Burko Y, Seluzicki A, Zander M, Pedmale U V, Ecker J R, Chory J. Chimeric activators and repressors define HY5 activity and reveal a light-regulated feedback mechanism[J]. The Plant Cell, 2020, 32(4):967-983.doi: 10.1105/tpc.19.00772.
pmid: 32086365
|
[29] |
Su C, Wang Y, Yu Y J, He Y Q, Wang L. Coordinative regulation of plants growth and development by light and circadian clock[J]. aBIOTECH, 2021, 2(2):176-189.doi: 10.1007/s42994-021-00041-6.
pmid: 36304756
|
[30] |
Yin Y, Shi H Y, Mi J, Qin X Y, Zhao J H, Zhang D K, Guo C, He X R, An W, Cao Y L, Zhu J H, Zhan X Q. Genome-wide identification and analysis of the BBX gene family and its role in carotenoid biosynthesis in wolfberry( Lycium barbarum L.)[J]. International Journal of Molecular Sciences, 2022, 23(15):8440.doi: 10.3390/ijms23158440.
|