[1] |
doi: 10.16035/j.issn.1001-7283.1985.01.010
|
|
Song T M. Sweet corn and super sweet corn[J]. Crops, 1985(1):18-19.
|
[2] |
Doll N M, Depège-Fargeix N, Rogowsky P M, Widiez T. Signaling in early maize kernel development[J]. Molecular Plant, 2017, 10(3):375-388.doi: 10.1016/j.molp.2017.01.008.
doi: S1674-2052(17)30009-6
pmid: 28267956
|
[3] |
doi: 10.3969/j.issn.1005-0906.2013.01.015
|
|
Shi Z S, Yao X Y, Zhu M. Differences of pericarp characteristics and palatability of fresh corn[J]. Journal of Maize Sciences, 2013(1):79-84.
|
[4] |
Ito G M, Brewbaker J L. Genetic analysis of pericarp thickness in progenies of eight corn hybrids[J]. Journal of the American Society for Horticultural Science, 1991, 116(6):1072-1077.doi: 10.21273/JASHS.116.6.1072.
doi: 10.21273/JASHS.116.6.1072
URL
|
[5] |
doi: 10.3724/SP.J.1006.2015.00359
|
|
Yu Y T, Li G K, Qi X T, Li C Y, Mao J H, Hu J G. Mapping and epistatic interactions of QTLs for pericarp thickness in sweet corn[J]. Acta Agronomica Sinica, 2015, 41(3):359-366.
doi: 10.3724/SP.J.1006.2015.00359
URL
|
[6] |
doi: 10.16768/j.issn.1004-874x.2011.14.047
|
|
Mo J Q, Li T K, Chen Z H, Huang H X, Gu G Q. Study on inheritance of peel thickness of super sweet corn[J]. Guangdong Agricultural Sciences, 2011, 38(14):13-16.
|
[7] |
Park K J, Sa K J, Koh H J, Lee J K. QTL analysis for eating quality-related traits in an F2∶3 population derived from waxy corn sweet corn cross[J]. Breeding Science, 2013, 63(3):325-332.doi: 10.1270/jsbbs.63.325.
doi: 10.1270/jsbbs.63.325
pmid: 24273428
|
[8] |
Wanlayaporn K, Somyong S, Pootakham W, Shearman J, Vanavichit A, Kumar P, Chee P W, Tragoonrung S. QTL mapping of pericarp thickness in immature and mature stages in thai tropical sweet corn(Zea mays var.saccharata)[J]. Chiang Mai Journal of Science, 2018, 45:177-187.
|
[9] |
Wu X M, Wang B, Xie F G, Zhang L P, Gong J, Zhu W, Li X Q, Feng F Q, Huang J. QTL mapping and transcriptome analysis identify candidate genes regulating pericarp thickness in sweet corn[J]. BMC Plant Biology, 2020, 20(1):117.doi: 10.1186/s12870-020-2295-8.
doi: 10.1186/s12870-020-2295-8
pmid: 32171234
|
[10] |
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis[J]. Statistical Applications in Genetics and Molecular Biology, 2005, 4:Article17.doi: 10.2202/1544-6115.1128.
doi: 10.2202/1544-6115.1128
|
[11] |
Zhu M D, Xie H J, Wei X J, Dossa K, Yu Y Y, Hui S Z, Tang G H, Zeng X S, Yu Y H, Hu P S, Wang J L. WGCNA analysis of salt-responsive core transcriptome identifies novel hub genes in rice[J]. Genes (Basel), 2019, 10(9):E719.doi: 10.3390/genes10090719.
doi: 10.3390/genes10090719
|
[12] |
doi: 10.3724/SP.J.1006.2020.93021
|
|
Ma J, Cao Y Y, Wang L F, Li J J, Wang H, Fan Y P, Li H Y. Identification of gene co-expression modules of maize plant height and ear height by WGCNA[J]. Acta Agronomica Sinica, 2020, 46(3):385-394.
doi: 10.3724/SP.J.1006.2020.93021
|
[13] |
Liu H H, Wu H F, Wang Y, Wang H, Chen S H, Yin Z T. Comparative transcriptome profiling and co-expression network analysis uncover the key genes associated withearly-stage resistance to Aspergillus flavus in maize[J]. BMC Plant Biology, 2021, 21(1):216.doi: 10.1186/s12870-021-02983-x.
doi: 10.1186/s12870-021-02983-x
|
[14] |
Cao L R, Lu X M, Zhang P Y, Ku L X, Wang G R, Yuan Z, Zhang X, Cui J Y, Han J L, Liu Y, Cao Y Y, Wei L, Wang T C. Regulatory networks of gene expression in maize( Zea mays)under drought stress and re-watering[J]. bioRxiv, 2018.doi: 10.1101/361964.
doi: 10.1101/361964
|
[15] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.doi: 10.1186/s13059-014-0550-8.
doi: 10.1186/s13059-014-0550-8
URL
|
[16] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.doi: 10.1016/j.molp.2020.06.009.
doi: 10.1016/j.molp.2020.06.009
URL
|
[17] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N D, Schwikowski B, Ideker T. Cytoscape:A software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11):2498-2504.doi: 10.1101/gr.1239303.
doi: 10.1101/gr.1239303
pmid: 14597658
|
[18] |
Yu G C, Wang L G, Han Y, He Y Y. clusterProfiler:An R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5):284-287.doi: 10.1089/omi.2011.0118.
doi: 10.1089/omi.2011.0118
URL
|
[19] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[20] |
Schmidt D H, Tracy W F. Effects of starchy sugary-2 and sugary sugary-2 endosperm on pericarp thickness in sweet corn[J]. HortScience, 1988, 23(5):885-886.doi: 10.21273/HORTSCI.23.5.885.
doi: 10.21273/HORTSCI.23.5.885
URL
|
[21] |
doi: 10.3969/j.issn.1001-7283.2008.01.006
|
|
Zhou S M, Li X Q, Sun X D. Study on change patterns of sweet corn pericarp thickness[J]. Crops, 2008(1):17-20.
|
[22] |
doi: 10.3969/gab.032.000135
|
|
Song C X, Lei P, Wang T. Gene co-expression network analysis based on WGCNA algorithm-theory and implementation in R software[J]. Genomics and Applied Biology, 2013, 32(1):135-141.
|
[23] |
Earp C F, Mcdonough C M, Rooney L W. Microscopy of pericarp development in the caryopsis of Sorghum bicolor (L.) Moench[J]. Journal of Cereal Science, 2004, 39(1):21-27.doi: 10.1016/S0733-5210(03)00060-2.
doi: 10.1016/S0733-5210(03)00060-2
URL
|
[24] |
Yu X R, Zhou L, Zhang J, Yu H, Xiong F, Wang Z. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm[J]. Journal of the Science of Food and Agriculture, 2015, 95(1):148-157.doi: 10.1002/jsfa.6696.
doi: 10.1002/jsfa.6696
pmid: 24740388
|
[25] |
Castorina G, Domergue F, Chiara M, Zilio M, Persico M, Ricciardi V, Horner D S, Consonni G. Drought-responsive ZmFDL1 MYB94 gene regulates cuticle biosynthesis and cuticle-dependent leaf permeability[J]. Plant Physiology, 2020, 184(1):266-282.doi: 10.1104/PP.20.00322.
doi: 10.1104/pp.20.00322
pmid: 32665334
|
[26] |
Raffaele S, Vailleau F, Léger A, Joubés J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis[J]. The Plant Cell, 2008, 20(3):752-767.doi: 10.1105/tpc.107.054858.
doi: 10.1105/tpc.107.054858
URL
|
[27] |
Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis[J]. The Plant Cell, 2011, 23(3):1138-1152.doi: 10.1105/tpc.111.083485.
doi: 10.1105/tpc.111.083485
URL
|
[28] |
Lee S B, Suh M C. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis[J]. Plant and Cell Physiology, 2015, 56(1):48-60.doi: 10.1093/pcp/pcu142.
doi: 10.1093/pcp/pcu142
URL
|
[29] |
Wang J, Xu Y D, Zhang W B, Zheng Y, Yuan B, Li Q, Leng P. Tomato SlPP2C5 is involved in the regulation of fruit development and ripening[J]. Plant and Cell Physiology, 2021, 62(11):1760-1769.doi: 10.1093/pcp/pcab130.
doi: 10.1093/pcp/pcab130
pmid: 34428298
|
[30] |
Hager A. Role of the plasma membrane H +-ATPase in auxin-induced elongation growth:historical and new aspects[J]. Journal of Plant Research, 2003, 116(6):483-505.doi: 10.1007/s10265-003-0110-x.
doi: 10.1007/s10265-003-0110-x
URL
|
[31] |
Doonan J H, Kitsios G. Functional evolution of cyclin-dependent kinases[J]. Molecular Biotechnology, 2009, 42(1):14-29.doi: 10.1007/s12033-008-9126-8.
doi: 10.1007/s12033-008-9126-8
pmid: 19145493
|
[32] |
doi: 10.1146/annurev.genet.40.110405.090431
pmid: 17094738
|
[33] |
Czerednik A, Busscher M, Bielen B A M, Wolters-Arts M, de Maagd R A, Angenent G C. Regulation of tomato fruit pericarp development by an interplay between CDKB and CDKA1 cell cycle genes[J]. Journal of Experimental Botany, 2012, 63(7):2605-2617.doi: 10.1093/jxb/err451.
doi: 10.1093/jxb/err451
pmid: 22282536
|
[34] |
Rijavec T, Jain M, Dermastia M, Chourey P S. Spatial and temporal profiles of cytokinin biosynthesis and accumulation in developing caryopses of maize[J]. Annals of Botany, 2011, 107(7):1235-1245.doi: 10.1093/aob/mcq247.
doi: 10.1093/aob/mcq247
pmid: 21169292
|
[35] |
Fahima A, Levinkron S, Maytal Y, Hugger A, Lax I, Huang X M, Eyal Y, Lichter A, Goren M, Stern R A, Harpaz-Saad S. Cytokinin treatment modifies litchi fruit pericarp anatomy leading to reduced susceptibility to post-harvest pericarp browning[J]. Plant Science, 2019, 283:41-50.doi: 10.1016/j.plantsci.2019.02.006.
doi: S0168-9452(18)31291-3
pmid: 31128712
|
[36] |
Nelissen H, Rymen B, Jikumaru Y, Demuynck K, Van Lijsebettens M V, Kamiya Y, Inzé D, Beemster G T S. A Local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division[J]. Current Biology, 2012, 22(13):1183-1187.doi: 10.1016/j.cub.2012.04.065.
doi: 10.1016/j.cub.2012.04.065
pmid: 22683264
|
[37] |
Cosgrove D J. Wall structure and wall loosening.A look backwards and forwards[J]. Plant Physiology, 2001, 125(1):131-134.doi: 10.1104/pp.125.1.131.
doi: 10.1104/pp.125.1.131
pmid: 11154315
|
[38] |
Micheli F. Pectin methylesterases:cell wall enzymes with important roles in plant physiology[J]. Trends in Plant Science, 2001, 6(6):414-419.doi: 10.1016/S1360-1385(01)02045-3.
doi: 10.1016/S1360-1385(01)02045-3.
URL
|
[39] |
Wen F S, Zhu Y M, Hawes M C. Effect of pectin methylesterase gene expression on pea root development[J]. The Plant Cell, 1999, 11(6):1129-1140.doi: 10.1105/tpc.11.6.1129.
doi: 10.1105/tpc.11.6.1129
URL
|
[40] |
doi: 10.3724/SP.J.1006.2011.02111
|
|
Le S J, Xiao D X, Liu P F, Zeng M H, Wang W Q, Wang X M. Relationship between pericarp structure and kernel tenderness in super sweet corn[J]. Acta Agronomica Sinica, 2011, 37(11):2111-2116.
doi: 10.3724/SP.J.1006.2011.02111
URL
|
[41] |
Lu L, Hou Q C, Wang L L, Zhang T Y, Zhao W, Yan T W, Zhao L N, Li J P, Wan X Y. Genome-wide identification and characterization of polygalacturonase gene family in maize( Zea mays L.)[J]. International Journal of Molecular Sciences, 2021, 22(19):10722.doi: 10.3390/ijms221910722.
doi: 10.3390/ijms221910722
URL
|
[42] |
Liu X, Xu T, Dong X F, Liu Y D, Liu Z H, Shi Z H, Wang Y L, Qi M F, Li T L. The role of gibberellins and auxin on the tomato cell layers in pericarp via the expression of ARFs regulated by miRNAs in fruit set[J]. Acta Physiol Plant, 2016, 38(3):77.doi: 10.1007/s11738-016-2091-0.
doi: 10.1007/s11738-016-2091-0
URL
|
[43] |
Jakoby M, Weisshaar B, Diöge·Laser W, Vicente·Carbajosa J, Thomas K, Parcy F, Group B. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3):106-111.doi: 10.1016/s1360-1385(01)02223-3.
doi: 10.1016/s1360-1385(01)02223-3
pmid: 11906833
|