[1] |
pmid: 18444910
|
[2] |
Wang D J, Gao Y, Sun S M, Lu X, Li Q S, Li L W, Wang K, Liu J H. Effects of salt stress on the antioxidant activity and malondialdehyde, solution protein, proline, and chlorophyll contents of three Malus species[J]. Life, 2022, 12(11):1929.doi: 10.3390/life12111929.
|
[3] |
Jamil A, Riaz S, Ashraf M, Foolad M R. Gene expression profiling of plants under salt stress[J]. Critical Reviews in Plant Sciences, 2011, 30(5):435-458.doi: 10.1080/07352689.2011.605739.
|
[4] |
Alasvandyari F, Mahdavi B, Madah H. Glycine betaine affects the antioxidant system and ion accumulation and reduces salinity-induced damage in safflower seedlings[J]. Archives of Biological Sciences, 2017, 69(1):139-147.doi: 10.2298/abs160216089a.
|
[5] |
Chen X, Cheng X W, Zhu H, Bañuelos G, Shutes B, Wu H T. Influence of salt stress on propagation,growth and nutrient uptake of typical aquatic plant species[J]. Nordic Journal of Botany, 2019, 37(12):e02411.doi: 10.1111/njb.02411.
|
[6] |
Soltabayeva A, Ongaltay A, Omondi J O, Srivastava S. Morphological,physiological and molecular markers for salt-stressed plants[J]. Plants, 2021, 10(2):243.doi: 10.3390/plants10020243.
|
[7] |
于沛玉. 盐胁迫下K+对珠美海棠幼苗生理特性的影响[D]. 天津: 天津农学院, 2014.
|
|
Yu P Y. Effects potassium ion on physiological property of Malus zumi seedlings under salt stress[D]. Tianjin:Tianjin Agricultural University, 2014.
|
[8] |
Mohammad M, Shibli R, Ajlouni M, Nimri L. Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition[J]. Journal of Plant Nutrition, 1998, 21(8):1667-1680.doi: 10.1080/01904169809365512.
|
[9] |
Meloni D A, Oliva M A, Ruiz H A, Martinez C A. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress[J]. Journal of Plant Nutrition, 2001, 24(3):599-612.doi: 10.1081/PLN-100104983.
|
[10] |
|
|
Dai W M, Cai R, Pan J S, He H L. Effects of salt stress on growth development of tomato[J]. Acta Agriculturae Shanghai, 2002, 18(1):58-62.
|
[11] |
高玉坤, 杨溥原, 项晓冬, 魏世林, 任根增, 殷丛培, 梁红凯, 崔江慧, 常金华. 不同耐盐高粱品种全生育期对盐胁迫的响应[J]. 华北农学报, 2020, 35(6):113-121.doi: 10.7668/hbnxb.20191411.
|
|
Gao Y K, Yang P Y, Xiang X D, Wei S L, Ren G Z, Yin C P, Liang H K, Cui J H, Chang J H. Response of different salt tolerant sorghum varieties to salt stress in the whole growth period[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(6):113-121.
doi: 10.7668/hbnxb.20191411
|
[12] |
El-Hendawy S E, Hu Y C, Schmidhalter U. Growth,ion content,gas exchange,and water relations of wheat genotypes differing in salt tolerances[J]. Australian Journal of Agricultural Research, 2005, 56(2):123.doi: 10.1071/ar04019.
|
[13] |
Feng Y N, Cui J Q, Zhou T, Liu Y, Yue C P, Huang J Y, Hua Y P. Comprehensive dissection into morpho-physiologic responses,ionomic homeostasis,and transcriptomic profiling reveals the systematic resistance of allotetraploid rapeseed to salinity[J]. BMC Plant Biology, 2020, 20(1):534.doi: 10.1186/s12870-020-02734-4.
|
[14] |
Tao R R, Ding J F, Li C Y, Zhu X K, Guo W S, Zhu M. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage[J]. Frontiers in Plant Science, 2021, 12:646175.doi: 10.3389/fpls.2021.646175.
|
[15] |
王庆彪, 王艳萍, 令狐波, 钱慧慧, 赵秋菊, 张丽. 盐胁迫对萝卜幼苗生长及 RsCAT和 RsSOD基因表达的影响[J]. 华北农学报, 2021, 36(6):1-6.doi: 10.7668/hbnxb.20192155.
|
|
Wang Q B, Wang Y P, Linghu B, Qian H H, Zhao Q J, Zhang L. Effect of salt stress on seedling growth and transcription of RsCAT and RsSOD genes in radish[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(6):1-6.
|
[16] |
Tester M, Davenport R. Na + tolerance and Na + transport in higher plants[J]. Annals of Botany, 2003, 91(5):503-527.doi: 10.1093/aob/mcg058.
pmid: 12646496
|
[17] |
|
[18] |
Hedrich R, Shabala S. Stomata in a saline world[J]. Current Opinion in Plant Biology, 2018, 46:87-95.doi: 10.1016/j.pbi.2018.07.015.
pmid: 30138845
|
[19] |
Badawi G H, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco ( Nicotiana tabacum) chloroplasts[J]. Plant Science, 2004, 166(4):919-928.doi: 10.1016/j.plantsci.2003.12.007.
|
[20] |
Allakhverdiev S I, Murata N. Salt stress inhibits photosystems Ⅱ and Ⅰ in cyanobacteria[J]. Photosynthesis Research, 2008, 98(1):529-539.doi: 10.1007/s11120-008-9334-x.
|
[21] |
Munns R, Day D A, Fricke W, Watt M, Arsova B, Barkla B J, Bose J, Byrt C S, Chen Z H, Foster K J, Gilliham M, Henderson S W, Jenkins C L D, Kronzucker H J, Miklavcic S J, Plett D, Roy S J, Shabala S, Shelden M C, Soole K L, Taylor N L, Tester M, Wege S, Wegner L H, Tyerman S D. Energy costs of salt tolerance in crop plants[J]. New Phytologist, 2020, 225(3):1072-1090.doi: 10.1111/nph.15864.
pmid: 31004496
|
[22] |
Turgut Yiğit A, Yilmaz O, UzĪlday B, Özgür Uzİday R, Türkan İ. Plant response to salinity:an analysis of ROS formation,signaling,and antioxidant defense[J]. Turkish Journal of Botany, 2020, 44(1):1-13.doi: 10.3906/bot-1911-15.
|
[23] |
pmid: 29489394
|
[24] |
Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants[J]. The New Phytologist, 2019, 221(3):1197-1214.doi: 10.1111/nph.15488.
|
[25] |
Sies H, Jones D P. Reactive oxygen species (ROS) as pleiotropic physiological signaling agents[J]. Nature Reviews Molecular Cell Biology, 2020, 21(7):363-383.doi: 10.1038/s41580-020-0230-3.
|
[26] |
Pang C H, Wang B S. Oxidative stress and salt tolerance in plants[J]. Progress in Botany, 2008, 69:231-245.doi: 10.1007/978-3-540-72954-9_9.
|
[27] |
Tewari R K, Kumar P, Sharma P N. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants[J]. Planta, 2006, 223(6):1145-1153.doi: 10.1007/s00425-005-0160-5.
pmid: 16292566
|
[28] |
|
|
Wang H X, Li G C, Xu J F, Wang W X, Jin L P. Advances in research on salt tolerance mechanism of plants[J]. Crops, 2022(5):1-12.
|
[29] |
赵龙. 盐生植物碱地肤耐盐生理及分子机制研究[D]. 长春: 东北师范大学, 2018.
|
|
Zhao L. Pysiological and molecular mechanisms underlying salt tolerance in halophyte Kochia sieversiana[D]. Changchun: Northeast Normal University, 2018.
|
[30] |
pmid: 32167791
|
[31] |
|
|
Xue Q Q, Zhao L L, Wang Y X, Zhao M. Research progress on salt tolerance of halophytes[J]. Chinese Wild Plant Resources, 2021, 40(5):60-65.
|
[32] |
Zhu J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003, 6(5):441-445.doi: 10.1016/s1369-5266(03)00085-2.
pmid: 12972044
|
[33] |
|
|
Liu X, Liu X H, Song S, Lü W J, Yang X H, Ma Y X, Yang Y Q. Regulation of ion homeostasis for salinity tolerance in plants[J]. Plant Physilogy Journal, 2023, 59(4):715-726.
|
[34] |
Tomeo N J, Rosenthal D M. Variable mesophyll conductance among soybean cultivars sets a tradeoff between photosynthesis and water-use-efficiency[J]. Plant Physiology, 2017, 174(1):241-257.doi: 10.1104/pp.16.01940.
pmid: 28270627
|
[35] |
Zuo Z Y, Ye F, Wang Z S, Li S X, Li H, Guo J H, Mao H P, Zhu X C, Li X N. Salt acclimation induced salt tolerance in wild-type and chlorophyl b-deficient mutant wheat[J]. Plant,Soil and Environment, 2021, 67(1):26-32.doi: 10.17221/429/2020-pse.
|
[36] |
|
|
Zhao S, Liao L P, Zhang H W, Ma Y, Li G T. Impacts of salt stress on characteristics of photosynthetic of Zizyphus jujube seedlings[J]. Journal of Arid Land Resources and Environment, 2018, 32(5):149-153.
|
[37] |
|
|
Fu N X, He M R, Zhuge Y P, Dai X L, Hu G Q, Dong Y J. Effects and mechanisms of exogenous SA alleviating the growth of winter wheat seedlings under salt stress[J]. Journal of China Agricultural University, 2019, 24(3):10-17.
|
[38] |
尹宝丝. 盐胁迫对黑枸杞幼苗生长及光合特性的影响[D]. 北京: 北京林业大学, 2019.
|
|
Yin B S. Effects of salt treatments on characteristics of growth and photosynthesis of Lycium ruthenicum Murr.[D]. Beijing: Beijing Forestry University, 2019.
|
[39] |
宋倩云. 冬青对盐胁迫的生理响应及耐盐筛选[D]. 南京: 南京林业大学, 2020.
|
|
Song Q Y. Physiological response of hollies to salt stress and the selection of salt-tolerant species[D]. Nanjing: Nanjing Forestry University, 2020.
|
[40] |
|
|
Zhao K F. Adaptation to saline stress in plant[J]. Bulletin of Biology, 2002, 37(6):7-10.
|
[41] |
Beacham A M, Hand P, Pink D A, Monaghan J M. Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress[J]. Journal of the Science of Food and Agriculture, 2017, 97(15):5271-5277.doi: 10.1002/jsfa.8411.
pmid: 28474472
|
[42] |
|
|
Zhang F J. The study status quo of halophyte's salt tolerant structure[J]. Journal of Hebei Vocation-Technical Teachers College, 2003, 17(4):75-78.
|
[43] |
梁爽, 王广野. 盐生植物耐盐结构研究进展[J]. 长春师范大学学报, 2015, 34(3):71-74.
|
|
Liang S, Wang G Y. Research advance on salt-resistant structures of halophytes[J]. Journal of Changchun Normal University, 2015, 34(3):71-74.
|
[44] |
Munns R, Passioura J B, Colmer T D, Byrt C S. Osmotic adjustment and energy limitations to plant growth in saline soil[J]. New Phytologist, 2020, 225(3):1091-1096.doi: 10.1111/nph.15862.
pmid: 31006123
|
[45] |
Yuan F, Leng B Y, Wang B S. Progress in studying salt secretion from the salt glands in recretohalophytes:how do plants secrete salt?[J]. Frontiers in Plant Science, 2016, 7:977.doi: 10.3389/fpls.2016.00977.
|
[46] |
Yuan F, Wang B S. Handbook of Halophytes:adaptation of recretohalophytes to salinity[M]. Cambridge: Springer Press, 2020.doi: 10.1007/978-3-030-17854-3_32-1.
|
[47] |
|
[48] |
|
|
Lu J M, Li J D, Hu A L, Li X L. ESM observation of secretory salt structure in Limonium bicolor leaf[J]. Chinese Journal of Applied Ecology, 1995, 6(4):879-888.
|
[49] |
Zhang M J, Chen Z, Yuan F, Wang B S, Chen M. Integrative transcriptome and proteome analyses provide deep insights into the molecular mechanism of salt tolerance in Limonium bicolor[J]. Plant Molecular Biology, 2022, 108(1/2):127-143.doi: 10.1007/s11103-021-01230-z.
|
[50] |
Yuan F, Wang X, Zhao B Q, et al. The genome of the recretohalophyte Limonium bicolor provides insights into salt gland development and salinity adaptation during terrestrial evolution[J]. Molecular Plant, 2022, 15(6):1024-1044.doi: 10.1016/j.molp.2022.04.011.
|
[51] |
Ramadan T, Flowers T J. Effects of salinity and benzyl adenine on development and function of microhairs of Zea mays L.[J]. Planta, 2004, 219(4):639-648.doi: 10.1007/s00425-004-1269-7.
pmid: 15098124
|
[52] |
Jarvis D E, Ho Y S, Lightfoot D J, et al. The genome of Chenopodium quinoa[J]. Nature, 2017, 542:307-312.doi: 10.1038/nature21370.
|
[53] |
Mangelson H, Jarvis D E, Mollinedo P, Rollano-Penaloza O M, Palma-Encinas V D, Gomez-Pando L R, Jellen E N, Maughan P J. The genome of Chenopodium pallidicaule:an emerging Andean super grain[J]. Applications in Plant Sciences, 2019, 7(11):e11300.doi: 10.1002/aps3.11300.
|
[54] |
Chen J, Xiao Q, Wu F H, Dong X J, He J X, Pei Z M, Zheng H L, Näsholm T. Nitric oxide enhances salt secretion and Na + sequestration in a mangrove plant, Avicennia marina,through increasing the expression of H +-ATPase and Na +/H + antiporter under high salinity[J]. Tree Physiology, 2010, 30(12):1570-1585.doi: 10.1093/treephys/tpq086.
|
[55] |
|
|
Yang H B. Study on salt resistance mechanism of Malus plants[D]. Beijing: China Agricultural University, 2004.
|
[56] |
Tan W K, Lin Q S, Lim T M, Kumar P, Loh C S. Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing saline environment[J]. Plant,Cell & Environment, 2013, 36(8):1410-1422.doi: 10.1111/pce.12068.
|
[57] |
Duan L N, Dietrich D, Ng C H, Chan P M Y, Bhalerao R, Bennett M J, Dinneny J R. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings[J]. The Plant Cell, 2013, 25(1):324-341.doi: 10.1105/tpc.112.107227.
|
[58] |
|
|
Lu J M, Li J D. The anatomical study of three dicotyledons roots in saline-alkali soil[J]. Journal of Northeast Normal Universtiy, 1994, 26(3):96-99.
|
[59] |
Reinhardt D H, Rost T L. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots[J]. Environmental and Experimental Botany, 1995, 35(4):563-574.doi: 10.1016/0098-8472(95)00015-1.
|
[60] |
Karahara I, Ikeda A, Kondo T, Uetake Y. Development of the Casparian strip in primary roots of maize under salt stress[J]. Planta, 2004, 219(1):41-47.doi: 10.1007/s00425-004-1208-7.
pmid: 14986139
|
[61] |
Barberon M, Vermeer J E M, De Bellis D, Wang P, Naseer S, Andersen T G, Humbel B M, Nawrath C, Takano J, Salt D E, Geldner N. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation[J]. Cell, 2016, 164(3):447-459.doi: 10.1016/j.cell.2015.12.021.
pmid: 26777403
|
[62] |
Wang Y Y, Cao Y B, Liang X Y, Zhuang J H, Wang X F, Qin F, Jiang C F. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize[J]. Nature Communications, 2022, 13(1):2222.doi: 10.1038/s41467-022-29809-0.
|
[63] |
Galvan-Ampudia C S, Julkowska M M, Darwish E, Gandullo J, Korver R A, Brunoud G, Haring M A, Munnik T, Vernoux T, Testerink C. Halotropism is a response of plant roots to avoid a saline environment[J]. Current Biology, 2013, 23(20):2044-2050.doi: 10.1016/j.cub.2013.08.042.
pmid: 24094855
|
[64] |
Korver R A, van den Berg T, Meyer A J, Galvan-Ampudia C S, Ten Tusscher K H W J, Testerink C. Halotropism requires phospholipase Dζ1-mediated modulation of cellular polarity of auxin transport carriers[J]. Plant,Cell & Environment, 2020, 43(1):143-158.doi: 10.1111/pce.13646.
|
[65] |
Yu B, Zheng W N, Xing L, Zhu J K, Persson S, Zhao Y. Root twisting drives halotropism via stress-induced microtubule reorientation[J]. Developmental Cell, 2022, 57(20):2412-2425.e6.doi: 10.1016/j.devcel.2022.09.012.
pmid: 36243013
|
[66] |
Sun H J, Sun X W, Wang H, Ma X L. Advances in salt tolerance molecular mechanism in tobacco plants[J]. Hereditas, 2020, 157(1):5.doi: 10.1186/s41065-020-00118-0.
pmid: 32093781
|
[67] |
Qi Y C, Liu W Q, Qiu L Y, Zhang S M, Ma L, Zhang H. Overexpression of glutathione S-transferase gene increases salt tolerance of Arabidopsis[J]. Russian Journal of Plant Physiology, 2010, 57(2):233-240.doi: 10.1134/S102144371002010X.
|
[68] |
Pang C H, Li K, Wang B S. Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana[J]. Physiologia Plantarum, 2011, 143(4):355-366.doi: 10.1111/j.1399-3054.2011.01515.x.
|
[69] |
Li K, Pang C H, Ding F, Sui N, Feng Z T, Wang B S. Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants[J]. South African Journal of Botany, 2012, 78:235-245.doi: 10.1016/j.sajb.2011.09.006.
|
[70] |
Negi N P, Shrivastava D C, Sharma V, Sarin N B. Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco[J]. Plant Cell Reports, 2015, 34(7):1109-1126.doi: 10.1007/s00299-015-1770-4.
|
[71] |
pmid: 12234732
|
[72] |
Arias-Moreno D M, Jiménez-Bremont J F, Maruri-López I, Delgado-Sánchez P. Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress[J]. Scientific Reports, 2017, 7(1):8656.doi: 10.1038/s41598-017-08744-x.
pmid: 28819160
|
[73] |
Sharma P, Dubey R S. Ascorbate peroxidase from rice seedlings:properties of enzyme isoforms,effects of stresses and protective roles of osmolytes[J]. Plant Science, 2004, 167(3):541-550.doi: 10.1016/j.plantsci.2004.04.028.
|
[74] |
Singh N, Mishra A, Jha B. Over-expression of the peroxisomal ascorbate peroxidase ( SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco[J]. Marine Biotechnology, 2014, 16(3):321-332.doi: 10.1007/s10126-013-9548-6.
|
[75] |
Huang D J, Ou B X, Prior R L. The chemistry behind antioxidant capacity assays[J]. Journal of Agricultural and Food Chemistry, 2005, 53(6):1841-1856.doi: 10.1021/jf030723c.
pmid: 15769103
|
[76] |
Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima[J]. Plant Physiology and Biochemistry, 2007, 45(3/4):244-249.doi: 10.1016/j.plaphy.2007.02.001.
|
[77] |
Falleh H, Jalleli I, Ksouri R, Boulaaba M, Guyot S, Magné C, Abdelly C. Effect of salt treatment on phenolic compounds and antioxidant activity of two Mesembryanthemum edule provenances[J]. Plant Physiology and Biochemistry, 2012, 52:1-8.doi: 10.1016/j.plaphy.2011.11.001.
pmid: 22305062
|
[78] |
Valifard M, Mohsenzadeh S, Kholdebarin B, Rowshan V. Effects of salt stress on volatile compounds,total phenolic content and antioxidant activities of Salvia mirzayanii[J]. South African Journal of Botany, 2014, 93:92-97.doi: 10.1016/j.sajb.2014.04.002.
|
[79] |
Shao H B, Liang Z S, Shao M A, Sun Q. Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes at soil water deficits[J]. Colloids and Surfaces B,Biointerfaces, 2005, 42(3/4):187-195.doi: 10.1016/j.colsurfb.2005.02.007.
|
[80] |
杜玉玲. 外源水杨酸对盐胁迫唐古特白刺ROS代谢以及AsA-GSH循环的影响[D]. 哈尔滨: 东北农业大学, 2017.
|
|
Du Y L. Effects of exogenous salicylic acid on ROS metabolism and AsA-GSH cycle in Nitraria Tangutorum Bor.under salt stress.[D]. Harbin:Northeast Agricultural University, 2017.
|
[81] |
|
|
Chen Q, Liu Y L. Effect of glutathione on active oxygen scavenging system in leaves of barley seedlings under salt stress[J]. Acta Agronomica Sinica, 2000, 26(3):365.
|
[82] |
Boestfleisch C, Papenbrock J. Changes in secondary metabolites in the halophytic putative crop species Crithmum maritimum L., Triglochin maritima L.and Halimione portulacoides (L.) Aellen as reaction to mild salinity[J]. PLoS One, 2017, 12(4):e0176303.doi: 10.1371/journal.pone.0176303.
|
[83] |
He J, Ng O W J, Qin L. Salinity and salt-priming impact on growth,photosynthetic performance,and nutritional quality of edible Mesembryanthemum crystallinum L.[J]. Plants, 2022, 11(3):332.doi: 10.3390/plants11030332.
|
[84] |
Verbruggen N, Hermans C. Proline accumulation in plants:a review[J]. Amino Acids, 2008, 35(4):753-759.doi: 10.1007/s00726-008-0061-6.
pmid: 18379856
|
[85] |
|
|
Yang H B. Effect of exogenous Mg2+ on salt tolerance of buckwheat[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(6):130-133.
|
[86] |
Shabala S, Shabala L. Ion transport and osmotic adjustment in plants and bacteria[J]. Biomolecular Concepts, 2011, 2(5):407-419.doi: 10.1515/BMC.2011.032.
pmid: 25962045
|
[87] |
Zou C L, Liu D, Wu P R, Wang Y B, Gai Z J, Liu L, Yang F F, Li C F, Guo G H. Transcriptome analysis of sugar beet ( Beta vulgaris L.) in response to alkaline stress[J]. Plant Molecular Biology, 2020, 102(6):645-657.doi: 10.1007/s11103-020-00971-7.
|
[88] |
Teh C Y, Shaharuddin N A, Ho C L, Mahmood M. Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice ( Oryza sativa) under salt stress[J]. Acta Physiologiae Plantarum, 2016, 38(6):151.doi: 10.1007/s11738-016-2163-1.
|
[89] |
Butt M, Sattar A, Abbas T, Sher A, Ijaz M, Ul-Allah S, Shaheen M R, Kaleem F. Foliage applied proline induces salt tolerance in chili genotypes by regulating photosynthetic attributes,ionic homeostasis,and antioxidant defense mechanisms[J]. Horticulture,Environment,and Biotechnology, 2020, 61(4):693-702.doi: 10.1007/s13580-020-00236-8.
|
[90] |
Konstantinova T, Parvanova D, Atanassov A, Djilianov D. Freezing tolerant tobacco,transformed to accumulate osmoprotectants[J]. Plant Science, 2002, 163(1):157-164.doi: 10.1016/s0168-9452(02)00090-0.
|
[91] |
pmid: 20036181
|
[92] |
|
|
Liu X R, Shang L X, Cai Q A, Yu Z J, Ma R. Research progress of salt tolerant transgenic plants[J]. Journal of Northeast Agricultural Sciences, 2021, 46(4):27-33.
|
[93] |
|
|
Li B, Lü Y, Yang M X, Song T, Yu F, Liu Z W. Effects of saline-alkali stress on physiology and molecular mechanism of Brassica napus L.[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(3):86-93.
|
[94] |
De la Torre-González A, Montesinos-Pereira D, Blasco B, Ruiz J M. Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato ( Solanum lycopersicum L.) commercial genotypes[J]. Journal of Plant Physiology, 2018, 231:329-336.doi: 10.1016/j.jplph.2018.10.013.
pmid: 30388672
|
[95] |
Li Q L, Gao X R, Yu X H, Wang X Z, An L J. Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco[J]. Biotechnology Letters, 2003, 25(17):1431-1436.doi: 10.1023/A:1025003628446.
|
[96] |
Chen T H H, Murata N. Glycinebetaine protects plants against abiotic stress:mechanisms and biotechnological applications[J]. Plant,Cell & Environment, 2011, 34(1):1-20.doi: 10.1111/j.1365-3040.2010.02232.x.
|
[97] |
Xu Z J, Sun M L, Jiang X F, Sun H P, Dang X M, Cong H Q, Qiao F. Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells[J]. Frontiers in Plant Science, 2018, 9:1469.doi: 10.3389/fpls.2018.01469.
pmid: 30369936
|
[98] |
Abebe T, Guenzi A C, Martin B, Cushman J C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity[J]. Plant Physiology, 2003, 131(4):1748-1755.doi: 10.1104/pp.102.003616.
pmid: 12692333
|
[99] |
Penna S. Building stress tolerance through over-producing trehalose in transgenic plants[J]. Trends in Plant Science, 2003, 8(8):355-357.doi: 10.1016/S1360-1385(03)00159-6.
pmid: 12927963
|
[100] |
da Silva J M, Arrabça M C. Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata:a comparison between rapidly and slowly imposed water stress[J]. Journal of Plant Physiology, 2004, 161(5):551-555.doi: 10.1078/0176-1617-01109.
|
[101] |
Fujii H, Verslues P E, Zhu J K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(4):1717-1722.doi: 10.1073/pnas.1018367108.
|
[102] |
Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. The Plant Cell, 2002, 14(12):3089-3099.doi: 10.1105/tpc.007906.
|
[103] |
Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker J R, Shinozaki K. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis[J]. Plant & Cell Physiology, 2002, 43(12):1473-1483.doi: 10.1093/pcp/pcf188.
|
[104] |
|
|
Yang S, Zhang H X, Chen Q X, Yang X Y. Responses of apical ion fluxes to NaCl stress in Elaeagnus angustifolia seedlings[J]. Chinese Journal of Plant Ecology, 2017, 41(4):489-496.
|
[105] |
Faisal S, Mujtaba S M,Asma, Mahboob W. Polyethylene glycol mediated osmotic stress impacts on growth and biochemical aspects of wheat ( Triticum aestivum L.)[J]. Journal of Crop Science and Biotechnology, 2019, 22(3):213-223.doi: 10.1007/s12892-018-0166-0.
|
[106] |
Jacob P T, Siddiqui S A, Rathore M S. Seed germination,seedling growth and seedling development associated physiochemical changes in Salicornia brachiata (Roxb.) under salinity and osmotic stress[J]. Aquatic Botany, 2020, 166:103272.doi: 10.1016/j.aquabot.2020.103272.
|
[107] |
|
|
Dong H T, Xie C J, Hou P C, Li A X, Wang X D. Dynamic of ionic absorption and salt tolerance screening in wheat seedling under salt stress[J]. Chinese Journal of Eco-Agriculture, 2021, 29(4):762-770.
|
[108] |
|
|
Zhang H N, Li M J, Guo X L, Zhang Y M, Liu Z H. Effects of K+ absorption inhibitors on K+/Na+ ratios and activities of plasma membrane proteins under salt stress in Triticum aestivum L.[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(5):154-162.
|
[109] |
Mei X D, Dai T, Shen Y B. Adaptive strategy of Nitraria sibirica to transient salt,alkali and osmotic stresses via the alteration of Na +/K + fluxes around root tips[J]. Journal of Forestry Research, 2023, 34(2):425-432.doi: 10.1007/s11676-022-01486-1.
|
[110] |
|
|
Zhang Q, Li X J, Zhang S Y. Effects of silicon on growth and osmotic regulation of cotton seedlings under salt stress[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(6):110-117.
doi: 10.7668/hbnxb.201751589
|
[111] |
Chérel I, Lefoulon C, Boeglin M, Sentenac H. Molecular mechanisms involved in plant adaptation to low K + availability[J]. Journal of Experimental Botany, 2014, 65(3):833-848.doi: 10.1093/jxb/ert402.
|
[112] |
Anschütz U, Becker D, Shabala S. Going beyond nutrition:regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment[J]. Journal of Plant Physiology, 2014, 171(9):670-687.doi: 10.1016/j.jplph.2014.01.009.
pmid: 24635902
|
[113] |
Genc Y, Oldach K, Taylor J, Lyons G H. Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops[J]. New Phytologist, 2016, 210(1):145-156.doi: 10.1111/nph.13757.
pmid: 26607560
|
[114] |
Oyiga B C, Sharma R C, Baum M, Ogbonnaya F C, Léon J, Ballvora A. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat[J]. Plant,Cell & Environment, 2018, 41(5):919-935.doi: 10.1111/pce.12898.
|
[115] |
Zhao S S, Zhang Q K, Liu M Y, Zhou H P, Ma C L, Wang P P. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences, 2021, 22(9):4609.doi: 10.3390/ijms22094609.
|
[116] |
Azhar N, Su N N, Shabala L, Shabala S. Exogenously applied 24-epibrassinolide (EBL) ameliorates detrimental effects of salinity by reducing K + efflux via depolarization-activated K + channels[J]. Plant & Cell Physiology, 2017, 58(4):802-810.doi: 10.1093/pcp/pcx026.
|
[117] |
Su Y, Luo W G, Lin W H, Ma L Y, Kabir M H. Model of cation transportation mediated by high-affinity potassium transporters (HKTs) in higher plants[J]. Biological Procedures Online, 2015, 17:1.doi: 10.1186/s12575-014-0013-3.
pmid: 25698907
|
[118] |
Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder J I, Uozumi N. HKT transporters mediate salt stress resistance in plants:from structure and function to the field[J]. Current Opinion in Biotechnology, 2015, 32:113-120.doi: 10.1016/j.copbio.2014.11.025.
pmid: 25528276
|
[119] |
Buschmann P H, Vaidyanathan R, Gassmann W, Schroeder J I. Enhancement of Na + uptake currents,time-dependent inward-rectifying K + channel currents,and K +channel transcripts by K + starvation in wheat root cells[J]. Plant Physiology, 2000, 122(4):1387-1398.doi: 10.1104/pp.122.4.1387.
pmid: 10759535
|
[120] |
Ahmad P, Abdel Latef A A, Abd Allah E F, Hashem A, Sarwat M, Anjum N A, Gucel S. Calcium and potassium supplementation enhanced growth,osmolyte secondary metabolite production,and enzymatic antioxidant machinery in cadmium-exposed chickpea ( Cicer arietinum L.)[J]. Frontiers in Plant Science, 2016, 7:513.doi: 10.3389/fpls.2016.00513.
|
[121] |
Zhu J K. Cell signaling under salt,water and cold stresses[J]. Current Opinion in Plant Biology, 2001, 4(5):401-406.doi: 10.1016/s1369-5266(00)00192-8.
pmid: 11597497
|
[122] |
|
[123] |
Gong D M, Guo Y, Schumaker K S, Zhu J K. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis[J]. Plant Physiology, 2004, 134(3):919-926.doi: 10.1104/pp.103.037440.
|
[124] |
Du W M, Lin H X, Chen S, Wu Y S, Zhang J, Fuglsang A T, Palmgren M G, Wu W H, Guo Y. Phosphorylation of SOS3-like calcium-binding proteins by their interacting SOS2-like protein kinases is a common regulatory mechanism in Arabidopsis[J]. Plant Physiology, 2011, 156(4):2235-2243.doi: 10.1104/pp.111.173377.
|
[125] |
Bassil E, Coku A, Blumwald E. Cellular ion homeostasis:emerging roles of intracellular NHX Na +/H + antiporters in plant growth and development[J]. Journal of Experimental Botany, 2012, 63(16):5727-5740.doi: 10.1093/jxb/ers250.
pmid: 22991159
|
[126] |
Katschnig D, Bliek T, Rozema J, Schat H. Constitutive high-level SOS1 expression and absence of HKT1; 1 expression in the salt-accumulating halophyte Salicornia dolichostachya[J]. Plant Science, 2015, 234:144-154.doi: 10.1016/j.plantsci.2015.02.011.
pmid: 25804817
|
[127] |
|
[128] |
Dragwidge J M, Scholl S, Schumacher K, Gendall A R. NHX-type Na + (K +)/H + antiporters are required for TGN/EE trafficking and endosomal ion homeostasis in Arabidopsis thaliana[J]. Journal of Cell Science, 2019, 132(7):226472 doi: 10.1242/jcs.226472.
|
[129] |
Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J R, Harberd N P. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science, 2006, 311(5757):91-94.doi: 10.1126/science.1118642.
pmid: 16400150
|
[130] |
Orman-Ligeza B, Morris E C, Parizot B, et al. The xerobranching response represses lateral root formation when roots are not in contact with water[J]. Current Biology, 2018, 28(19):3165-3173.e5.doi: 10.1016/j.cub.2018.07.074.
pmid: 30270188
|
[131] |
Irving H R, Gehring C A, Parish R W. Changes in cytosolic pH and calcium of guard cells precede stomatal movements[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(5):1790-1794.doi: 10.1073/pnas.89.5.1790.
pmid: 11607281
|
[132] |
Brandt B, Munemasa S, Wang C, et al. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells[J]. eLife, 2015, 4:e03599.doi: 10.7554/eLife.03599.
|
[133] |
Gomez-Roldan V, Fermas S, Brewer P B, et al. Strigolactone inhibition of shoot branching[J]. Nature, 2008, 455(7210):189-194.doi: 10.1038/nature07271.
|
[134] |
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210):195-200.doi: 10.1038/nature07272.
|
[135] |
Van Ha C, Leyva-González M A, Osakabe Y, et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(2):851-856.doi: 10.1073/pnas.1322135111.
pmid: 24379380
|
[136] |
Qiao Y H, Lu W X, Wang R, Nisa Z U, Yu Y, Jin X X, Yu L J, Chen C. Identification and expression analysis of strigolactone biosynthetic and signaling genes in response to salt and alkaline stresses in soybean( Glycine max)[J]. DNA and Cell Biology, 2020, 39(10):1850-1861.doi: 10.1089/dna.2020.5637.
|
[137] |
Bleecker A B, Kende H. Ethylene:a gaseous signal molecule in plants[J]. Annual Review of Cell and Developmental Biology, 2000, 16:1-18.doi: 10.1146/annurev.cellbio.16.1.1.
pmid: 11031228
|
[138] |
Cao W H, Liu J, He X J, Mu R L, Zhou H L, Chen S Y, Zhang J S. Modulation of ethylene responses affects plant salt-stress responses[J]. Plant Physiology, 2007, 143(2):707-719.doi: 10.1104/pp.106.094292.
|
[139] |
Zhang L X, Li Z F, Quan R D, Li G J, Wang R G, Huang R F. An AP2 domain-containing gene, ESE1,targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis[J]. Plant Physiology, 2011, 157(2):854-865.doi: 10.1104/pp.111.179028.
|
[140] |
Peng J Y, Li Z H, Wen X, Li W Y, Shi H, Yang L S, Zhu H Q, Guo H W. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis[J]. PLoS Genetics, 2014, 10(10):e1004664.doi: 10.1371/journal.pgen.1004664.
|
[141] |
Dou L R, He K K, Higaki T, Wang X F, Mao T L. Ethylene signaling modulates cortical microtubule reassembly in response to salt stress[J]. Plant Physiology, 2018, 176(3):2071-2081.doi: 10.1104/pp.17.01124.
pmid: 29431630
|
[142] |
Yu Y W, Wang J, Shi H, Gu J T, Dong J G, Deng X W, Huang R F. Salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1 to control seed germination[J]. Plant Physiology, 2016, 170(4):2340-2350.doi: 10.1104/pp.15.01724.
pmid: 26850275
|
[143] |
Schachtman D P, Goodger J Q D. Chemical root to shoot signaling under drought[J]. Trends in Plant Science, 2008, 13(6):281-287.doi: 10.1016/j.tplants.2008.04.003.
pmid: 18467158
|
[144] |
Nishiyama R, Watanabe Y, Fujita Y, et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought,salt and abscisic acid responses,and abscisic acid biosynthesis[J]. The Plant Cell, 2011, 23(6):2169-2183.doi: 10.1105/tpc.111.087395.
pmid: 21719693
|
[145] |
Wang L, Li Q T, Lei Q, Feng C, Gao Y N, Zheng X D, Zhao Y, Wang Z, Kong J. MzPIP2;1:an aquaporin involved in radial water movement in both water uptake and transportation,altered the drought and salt tolerance of transgenic Arabidopsis[J]. PLoS One, 2015, 10(11):e0142446.doi: 10.1371/journal.pone.0142446.
|
[146] |
Allegra M, Reiter R J, Tan D X, Gentile C, Tesoriere L, Livrea M A. The chemistry of melatonin’s interaction with reactive species[J]. Journal of Pineal Research, 2003, 34(1):1-10.doi: 10.1034/j.1600-079x.2003.02112.x.
pmid: 12485365
|
[147] |
|
|
Chen N, Zhang W, Zhang X M. Melatonin regulates physiological characteristics of pepper seedlings in response to salt stress[J]. China Cucurbits and Vegetables, 2023, 36(5):84-90.
|
[148] |
郭远航, 王洪博, 白宝伟, 张磊, 赵丰年, 吕东雪, 贾婷, 王兴鹏. 外源褪黑素对大豆幼苗盐胁迫的缓解效应[J]. 华北农学报, 2024, 39(2):116-125.doi: 10.7668/hbnxb.20194665.
|
|
Guo Y H, Wang H B, Bai B W, Zhang L, Zhao F N, Lü D X, Jia T, Wang X P. Effects of exogenous melatonin on salt stress reduction in soybean seedlings[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(2):116-125.
doi: 10.7668/hbnxb.20194665
|
[149] |
|
|
Wang B, Song S J, Li D X, Dong W X, Zhang Y C. The mechanism of melatonin regulating Na+/K+ balance by mediating H2O2 in adzuki bean under salt stress[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(6):62-71.
|
[150] |
Savaldi-Goldstein S, Peto C, Chory J. The epidermis both drives and restricts plant shoot growth[J]. Nature, 2007, 446(7132):199-202.doi: 10.1038/nature05618.
|
[151] |
Ubeda-Tomás S, Swarup R, Coates J, Swarup K, Laplaze L, Beemster G T S, Hedden P, Bhalerao R, Bennett M J. Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis[J]. Nature Cell Biology, 2008, 10(5):625-628.doi: 10.1038/ncb1726.
pmid: 18425113
|
[152] |
Ubeda-Tomás S, Federici F, Casimiro I, Beemster G T S, Bhalerao R, Swarup R, Doerner P, Haseloff J, Bennett M J. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size[J]. Current Biology, 2009, 19(14):1194-1199.doi: 10.1016/j.cub.2009.06.023.
pmid: 19576770
|
[153] |
Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett M J, Chory J, Savaldi-Goldstein S. Brassinosteroid perception in the epidermis controls root meristem size[J]. Development, 2011, 138(5):839-848.doi: 10.1242/dev.061804.
pmid: 21270053
|
[154] |
González-García M P, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-García S, Russinova E, Caño-Delgado A I. Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots[J]. Development, 2011, 138(5):849-859.doi: 10.1242/dev.057331.
pmid: 21270057
|
[155] |
Zhao Y, Dong W, Zhang N B, Ai X H, Wang M C, Huang Z G, Xiao L T, Xia G M. A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling[J]. Plant Physiology, 2014, 164(2):1068-1076.doi: 10.1104/pp.113.227595.
pmid: 24326670
|
[156] |
Knight H, Trewavas A J, Knight M R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity[J]. The Plant Journal, 1997, 12(5):1067-1078.doi: 10.1046/j.1365-313x.1997.12051067.x.
|
[157] |
Stephan A B, Kunz H H, Yang E, Schroeder J I. Rapid hyperosmotic-induced Ca 2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35):E5242-E5249.doi: 10.1073/pnas.1519555113.
|
[158] |
Han N, Lan W J, He X, Shao Q, Wang B S, Zhao X J. Expression of a Suaeda salsa vacuolar H +/Ca 2+ transporter gene in Arabidopsis contributes to physiological changes in salinity[J]. Plant Molecular Biology Reporter, 2012, 30(2):470-477.doi: 10.1007/s11105-011-0353-y.
|
[159] |
Vivek P J, Tuteja N, Soniya E V. CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum[J]. PLoS One, 2013, 8(10):e76392.doi: 10.1371/journal.pone.0076392.
|
[160] |
Zhang S Q, Klessig D F. MAPK cascades in plant defense signaling[J]. Trends in Plant Science, 2001, 6(11):520-527.doi: 10.1016/s1360-1385(01)02103-3.
pmid: 11701380
|
[161] |
Jonak C, Nakagami H, Hirt H. Heavy metal stress.Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium[J]. Plant Physiology, 2004, 136(2):3276-3283.doi: 10.1104/pp.104.045724.
|
[162] |
Yang C J, Wang R N, Gou L Z, Si Y C, Guan Q J. Overexpression of Populus trichocarpa mitogen-activated protein kinase Kinase4 enhances salt tolerance in tobacco[J]. International Journal of Molecular Sciences, 2017, 18(10):2090.doi: 10.3390/ijms18102090.
|
[163] |
Sunagawa H, Cushman J, Agarie S. Crassulacean acid metabolism may alleviate production of reactive oxygen species in a facultative CAM plant,the common ice plant Mesembryanthemum crystallinum L.[J]. Plant Production Science, 2010, 13(3):256-260.doi: 10.1626/pps.13.256.
|
[164] |
陆静梅, 李建东, 景德章, 杨凤清, 张洪芹. 星星草 Puccinellia tenuiflora (Turcz.) Scribn.et Merr.解剖研究[J]. 东北师大学报(自然科学版), 1994(1):63-66.doi: 10.16163/j.cnki,22-1123/n.1994.01.016.
|
|
Lu J M, Li J D, Jing D Z, Yang F Q, Zhang H Q. The anatomical study of Puccinella tenuiflora (Turcz.) Scribn.et Merr.[J]. Journal of Northeast Normal University, 1994(1):63-66.
|
[165] |
|
|
Lu J M, Zhang C Z, Zhang H Q, Yang F Q. The character of morphology anatomy of monocotyledons in saline-alkali soil of resistant and the study physiological adaptability interrelation[J]. Journal of Northeast Normal University, 1994(2):79-82.
|
[166] |
Liu Y M, Xiong Y, Bassham D C. Autophagy is required for tolerance of drought and salt stress in plants[J]. Autophagy, 2009, 5(7):954-963.doi: 10.4161/auto.5.7.9290.
pmid: 19587533
|
[167] |
Yang X C, Srivastava R, Howell S H, Bassham D C. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress[J]. The Plant Journal, 2016, 85(1):83-95.doi: 10.1111/tpj.13091.
pmid: 26616142
|
[168] |
|
|
Wan X, Jing W X, Wei L, Xing X M, Shi S D. Physiological characteristics and autophagy of sugar beet seedlings in response to salt stress[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(4):90-95.
doi: 10.7668/hbnxb.20191924
|
[169] |
Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. Reactive oxygen species signaling in plant stress responses[J]. Nature Reviews Molecular Cell Biology, 2022, 23(10):663-679.doi: 10.1038/s41580-022-00499-2.
|
[170] |
梁栋, 杨于杰, 耿彪, 景盼盼, 苏献存, 武林锐, 渠云芳, 黄晋玲. 棉花远缘杂交新种质耐盐性鉴定及生理特性分析[J]. 华北农学报, 2024, 39(1):95-103.doi: 10.7668/hbnxb.20194209.
|
|
Liang D, Yang Y J, Geng B, Jing P P, Su X C, Wu L R, Qu Y F, Huang J L. Identification of salt tolerance and physiological characteristics of new germplasm of distant hybridization of cotton[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1):95-103.
doi: 10.7668/hbnxb.20194209
|
[171] |
Zhang A N, Liu Y, Wang F M, Li T F, Chen Z H, Kong D Y, Bi J G, Zhang F Y, Luo X X, Wang J H, Tang J J, Yu X Q, Liu G L, Luo L J. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene[J]. Molecular Breeding, 2019, 39(3):47.doi: 10.1007/s11032-019-0954-y.
|
[172] |
莫天宇, 徐善斌, 邹德堂, 王敬国, 刘化龙, 孙健, 贾琰, 赵宏伟, 郑洪亮. 利用CRISPR/Cas9技术敲除 OsEIL1和 OsEIL2基因改良水稻耐盐性[J]. 华北农学报, 2021, 36(1):71-80.doi: 10.7668/hbnxb.20190798.
|
|
Mo T Y, Xu S B, Zou D T, Wang J G, Liu H L, Sun J, Jia Y, Zhao H W, Zheng H L. Enhancing salt tolerance of rice by knocking out OsEIL1 and OsEIL2 via CRISPR/Cas9 system[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(1):71-80.
|
[173] |
程利华. 转ScALDH21基因棉花的获得及耐盐性鉴定[D]. 乌鲁木齐: 新疆农业大学, 2022.
|
|
Cheng L H. Acquisition of transgenic ScALDH21 cotton and identification of transgenic cotton on salt tolerance[D]. Urumqi: Xinjiang Agricultural University, 2022.
|