[1] |
Hartwig P, McDaniel M R. Flavor characteristics of lactic,malic,citric,and acetic acids at various pH levels[J]. Journal of Food Science, 1995, 60(2):384-388. doi: 10.1111/j.1365-2621.1995.tb05678.x.
doi: 10.1111/j.1365-2621.1995.tb05678.x
URL
|
[2] |
Corrigan Thomas C J, Lawless H T. Astringent subqualities in acids[J]. Chemical Senses, 1995, 20(6):593-600. doi: 10.1093/chemse/20.6.593.
doi: 10.1093/chemse/20.6.593
pmid: 8788093
|
[3] |
doi: 10.1111/j.1745-459X.2005.00005.x
URL
|
[4] |
Sano H, Egashira T, Kinekawa Y, Kitabatake N. Astringency of bovine milk whey protein[J]. Journal of Dairy Science, 2005, 88(7):2312-2317. doi: 10.3168/jds.S0022-0302(05)72909-X.
doi: 10.3168/jds.S0022-0302(05)72909-X
pmid: 15956294
|
[5] |
Lesschaeve I, Noble A C. Polyphenols:factors influencing their sensory properties and their effects on food and beverage preferences[J]. The American Journal of Clinical Nutrition, 2005, 81(S1):330-335. doi: 10.1093/ajcn/81.1.330S.
doi: 10.1093/ajcn/81.1.330S
|
[6] |
张宝善, 陈锦屏, 卢勇. 水果的涩味研究[J]. 食品研究与开发, 1998, 19(1):31-34.
|
|
Zhang B S, Chen J P, Lu Y. Study on astringency of fruit[J]. Food Research and Developentment, 1998, 19(1):31-34.
|
[7] |
doi: 10.1016/S0065-2628(08)60224-4
|
[8] |
doi: 10.16581/j.cnki.issn1671-3206.2015.12.037
|
|
Zou T, Peng Z Y. Research progress of tannin in polymer materials[J]. Applied Chemical Industry, 2015, 44(12):2308-2311.
|
[9] |
doi: 10.13925/j.cnki.gsxb.20160275
|
|
Chen J Y, Jin L Z, Cheng D W, Gu H, Zhang W Y, Zhang Y, Guo X Z, Fang J B. Research progress on fruit astringency[J]. Journal of Fruit Science, 2016, 33(12):1556-1566.
|
[10] |
Tijjani H, Zangoma M H, Mohammed Z S, Obidola S M, Egbuna C, Abdulai S I. Polyphenols:Classifications,biosynthesis and bioactivities[M]// Functional Foods and Nutraceuticals. Cham: Springer International Publishing, 2020:389-414. doi: 10.1007/978-3-030-42319-3_19.
doi: 10.1007/978-3-030-42319-3_19
|
[11] |
doi: 10.1111/j.1365-2621.2003.tb12345.x
URL
|
[12] |
Scharbert S, Hofmann T. Molecular definition of black tea taste by means of quantitative studies,taste reconstitution,and omission experiments[J]. Journal of Agricultural and Food Chemistry, 2005, 53(13):5377-5384. doi: 10.1021/jf050294d.
doi: 10.1021/jf050294d
pmid: 15969522
|
[13] |
Claudot A C, Ernst D, Sandermann H, Drouet A. Chalcone synthase activity and polyphenolic compounds of shoot tissues from adult and rejuvenated walnut trees[J]. Planta, 1997, 203(3):275-282. doi: 10.1007/s004250050192.
doi: 10.1007/s004250050192
URL
|
[14] |
李雪蕾. 光照强度对三种竹笋不同部位苦涩味物质的影响[D]. 北京: 中国林业科学研究院, 2014.
|
|
doi: 10.7666/d.Y2630041. Li X L.The effect of light intensity on bitter and astringent taste compound contents in different patrs of bamboo shoots of three species[D]. Beijing: Chinese Academy of Forestry, 2014.
doi: 10.7666/d
|
[15] |
doi: 10.3321/j.issn:1008-505X.2006.02.014
|
|
Zhang Y P, Xu X J, Lin X Y, Zhang Y S, Du S T, Li G. Effects of nitrogen forms on nitrate and oxalate accumulation in edible parts of spinach[J]. Journal of Plant Nutrition and Fertilizers, 2006, 12(2):227-232.
|
[16] |
Sun B S, Leandro C, Caldeira I, Duarte F L, Spranger I. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency[J]. Journal of Agricultural and Food Chemistry, 2013, 61(4):939-946. doi: 10.1021/jf303704u.
doi: 10.1021/jf303704u
pmid: 23294371
|
[17] |
Nishiyama S, Onoue N, Kono A, Sato A, Yonemori K, Tao R. Characterization of a gene regulatory network underlying astringency loss in persimmon fruit[J]. Planta, 2018, 247(3):733-743. doi: 10.1007/s00425-017-2819-0.
doi: 10.1007/s00425-017-2819-0
pmid: 29188374
|
[18] |
doi: 10.13305/j.cnki.jts.2015.04.011
|
|
Zhang Y N, Chen G S, Liu Y, Xu Y Q, Wang F, Chen J X, Yin J F. Analysis of the bitter and astringent taste of baked green tea and their chemical contributors[J]. Journal of Tea Science, 2015, 35(4):377-383.
|
[19] |
doi: 10.7506/spkx1002-6630-201705027
|
|
Zhang Z Y, Ding X C, Cui F X, Bai R H, Cai H J. Identification of bitter and astringent components in Ma bamboo shoots and their relationship with taste by sensory evaluation[J]. Food Science, 2017, 38(5):167-173.
|
[20] |
Brock A, Hofmann T. Identification of the key astringent compounds in spinach( Spinacia oleracea)by means of the taste dilution analysis[J]. Chemosensory Perception, 2008, 1(4):268-281. doi: 10.1007/s12078-008-9028-y.
doi: 10.1007/s12078-008-9028-y
URL
|
[21] |
doi: 10.16420/j.issn.0513-353x.2005.05.003
|
|
Nie L C, Sun J S. Relationship between the content of phenolic compounds and the taste of astringency and bitterness in apple fruit[J]. Acta Horticulturae Sinica, 2005, 32(5):778-782.
|
[22] |
doi: 10.13386/j.issn1002-0306.2020.13.037
|
|
Yu W J, Jin Q, Li G, Zhang R, Wu C Y, Wang X J, Yu J. Genetic diversity analysis of walnut germplasm resources based on bitter and astringent of fruits in Xinjiang[J]. Science and Technology of Food Industry, 2020, 41(13):234-240.
|
[23] |
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols:food sources and bioavailability[J]. The American Journal of Clinical Nutrition, 2004, 79(5):727-747. doi: 10.1093/ajcn/79.5.727.
doi: 10.1093/ajcn/79.5.727
URL
|
[24] |
Bennett R N, Shiga T M, Hassimotto N M A, Rosa E A S, Lajolo F M, Cordenunsi B R. Phenolics and antioxidant properties of fruit pulp and cell wall fractions of postharvest banana( Musa acuminata Juss.)cultivars[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13):7991-8003. doi: 10.1021/jf1008692.
doi: 10.1021/jf1008692
URL
|
[25] |
Bell R L, van der Zwet T. Stability of host resistance of pear to fire blight[J]. Acta Horticulturae, 1996(411):413-414. doi: 10.17660/actahortic.1996.411.84.
doi: 10.17660/actahortic.1996.411.84
|
[26] |
Das I, Sasmal S, Arora A. Effect of thermal and non-thermal processing on astringency reduction and nutrient retention in cashew apple fruit and its juice[J]. Journal of Food Science and Technology, 2021, 58(6):2337-2348. doi: 10.1007/s13197-020-04744-4.
doi: 10.1007/s13197-020-04744-4
pmid: 33967330
|
[27] |
doi: 10.19541/j.cnki.issn1004-4108.1994.03.015
|
|
Zhou S Y. Introduction of sensory analysis technology[J]. Standard and Quality of Light Industry, 1994(3):22-23.
|
[28] |
Gawel R, Oberholster A, Francis I L. A Mouth-feel Wheel':Terminology for communicating the mouth-feel characteristics of red wine[J]. Australian Journal of Grape and Wine Research, 2000, 6(3):203-207. doi: 10.1111/j.1755-0238.2000.tb00180.x.
doi: 10.1111/j.1755-0238.2000.tb00180.x
URL
|
[29] |
Charlton A J G, Baxter N J, Khan M L, Moir A J G, Haslam E, Davies A P, Williamson M P. Polyphenol/peptide binding and precipitation[J]. Journal of Agricultural and Food Chemistry, 2002, 50(6):1593-1601. doi: 10.1021/jf010897z.
doi: 10.1021/jf010897z
pmid: 11879042
|
[30] |
Rossetti D, Bongaerts J H H, Wantling E, Stokes J R, Williamson A M. Astringency of tea catechins:More than an oral lubrication tactile percept[J]. Food Hydrocolloids, 2009, 23(7):1984-1992. doi: 10.1016/j.foodhyd.2009.03.001.
doi: 10.1016/j.foodhyd.2009.03.001
URL
|
[31] |
Schwarz B, Hofmann T. Is there a direct relationship between oral astringency and human salivary protein binding?[J]. European Food Research and Technology, 2008, 227(6):1693-1698. doi: 10.1007/s00217-008-0895-x.
doi: 10.1007/s00217-008-0895-x
URL
|
[32] |
doi: 10.16626/j.cnki.issn1000-8047.2009.02.034
|
|
Zheng Z M, Wang Q. Preliminary report on introduction experiment of 8 sweet persimmon varieties in Fangshan,Beijing[J]. China Fruits, 2009(2):34-36.
|
[33] |
doi: 10.3969/j.issn.1000-1573.2002.z1.035
|
|
Wang L Y, Liu Y J, Wang W J. The research advance on the mechanisms of the growth and ripening in persimmon fruit[J]. Journal of Agricultural University of Hebei, 2002, 25(S1):115-117.
|
[34] |
doi: 10.11931/guihaia.gxzw201812003
|
|
Lu D, Huang S J, Long M H, Sun N J. Changes of tannin component content in persimmon fruits and leaves at different growth and development periods[J]. Guihaia, 2020, 40(5):735-743.
|
[35] |
doi: 10.3321/j.issn:1001-1498.1999.04.007
|
|
Fei X Q, Zhou L H, Gong B C. Differences of the components of tannin among three types of persimmon fruits and characteristics of tannin from Luotiantianshi[J]. Forest Research, 1999, 12(4):369-373.
|
[36] |
Ito S, Oshima Y. Studies on the tannin of Japanese persimmon( Diospyros Kaki L.)[J]. Agricultural and Biological Chemistry, 1962, 26(3):156-161. doi: 10.1080/00021369.1962.10857949.
doi: 10.1080/00021369.1962.10857949
|
[37] |
Matsuo T, Ito S. The chemical structure of kaki-tannin from immature fruit of the persimmon( Diospyros kaki L.)[J]. Agricultural and Biological Chemistry, 1978, 42(9):1637-1643. doi: 10.1080/00021369.1978.10863225.
doi: 10.1080/00021369.1978.10863225
|
[38] |
顾海峰. 柿子单宁的性质、结构及其与几种蛇毒蛋白的相互作用研究[D]. 武汉: 华中农业大学, 2007.
|
|
Gu H F. Studies on the characteristics,structures of persimmon tannin and its interaction with some snake venom proteins[D]. Wuhan: Huazhong Agricultural University, 2007.
|
[39] |
Mo R L, Yang S C, Huang Y M, Chen W X, Zhang Q L, Luo Z R. ADH and PDC genes involved in tannins coagulation leading to natural de-astringency in Chinese pollination constant and non-astringency persimmon( Diospyros kaki Thunb.)[J]. Tree Genetics & Genomes, 2016, 12(2):1-11. doi: 10.1007/s11295-016-0976-0.
doi: 10.1007/s11295-016-0976-0
|
[40] |
Akagi T, Ikegami A, Tsujimoto T, Kobayashi S, Sato A, Kono A, Yonemori K. DkMyb4 is a MYB transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit[J]. Plant Physiology, 2009, 151(4):2028-2045. doi: 10.1104/pp.109.146985.
doi: 10.1104/pp.109.146985
pmid: 19783643
|
[41] |
Akagi T, Ikegami A, Yonemori K. DkMyb2 wound-induced transcription factor of persimmon( Diospyros kaki Thunb.),contributes to proanthocyanidin regulation[J]. Planta, 2010, 232(5):1045-1059. doi: 10.1007/s00425-010-1241-7.
doi: 10.1007/s00425-010-1241-7
URL
|
[42] |
Prieur C, Rigaud J, Cheynier V, Moutounet M. Oligomeric and polymeric procyanidins from grape seeds[J]. Phytochemistry, 1994, 36(3):781-784. doi: 10.1016/S0031-9422(00)89817-9.
doi: 10.1016/S0031-9422(00)89817-9
URL
|
[43] |
Souquet J M, Cheynier V, Brossaud F, Moutounet M. Polymeric proanthocyanidins from grape skins[J]. Phytochemistry, 1996,43(2):509-512.doi:10.1016/0031- 9422(96)00301-9.
|
[44] |
Bogs J, Downey M O, Harvey J S, Ashton A R, Tanner G J, Robinson S P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves[J]. Plant Physiology, 2005, 139(2):652-663. doi: 10.1104/pp.105.064238.
doi: 10.1104/pp.105.064238
pmid: 16169968
|
[45] |
Sun F, Zhang P Y, Guo M R, Yu W Q, Chen K S. Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning[J]. Food Chemistry, 2013, 138(1):539-546. doi: 10.1016/j.foodchem.2012.10.058.
doi: 10.1016/j.foodchem.2012.10.058
pmid: 23265522
|
[46] |
温鹏飞. 葡萄与葡萄酒中黄烷醇类多酚和果实原花色素合成相关酶表达规律的研究[D]. 北京: 中国农业大学, 2005.
|
|
Wen P F. Studies on flavanols in wine and grape berry and expression of genes involved in proanthocyanidins biosynthesis during berry development[D]. Beijing: China Agricultural University, 2005.
|
[47] |
Huang Y F, Vialet S, Guiraud J L, Torregrosa L, Bertrand Y, Cheynier V, This P, Terrier N. A negative MYB regulator of proanthocyanidin accumulation,identified through expression quantitative locus mapping in the grape berry[J]. The New Phytologist, 2014, 201(3):795-809. doi: 10.1111/nph.12557.
doi: 10.1111/nph.12557
URL
|
[48] |
Chira K, Jourdes M, Teissedre P L. Cabernet sauvignon red wine astringency quality control by tannin characterization and polymerization during storage[J]. European Food Research and Technology, 2012, 234(2):253-261. doi: 10.1007/s00217-011-1627-1.
doi: 10.1007/s00217-011-1627-1
URL
|
[49] |
Deluc L, Bogs J, Walker A R, Ferrier T, Decendit A, Merillon J M, Robinson S P, Barrieu F. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries[J]. Plant Physiology, 2008, 147(4):2041-2053. doi: 10.1104/pp.108.118919.
doi: 10.1104/pp.108.118919
pmid: 18539781
|
[50] |
Hichri I, Heppel S C, Pillet J, Léon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine[J]. Molecular Plant, 2010, 3(3):509-523. doi: 10.1093/mp/ssp118.
doi: 10.1093/mp/ssp118
pmid: 20118183
|
[51] |
Ramsay N A, Glover B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity[J]. Trends in Plant Science, 2005, 10(2):63-70. doi: 10.1016/j.tplants.2004.12.011.
doi: 10.1016/j.tplants.2004.12.011
pmid: 15708343
|
[52] |
Rock C D. Trans-acting small interfering RNA4:Key to nutraceutical synthesis in grape development?[J]. Trends in Plant Science, 2013, 18(11):601-610. doi: 10.1016/j.tplants.2013.07.006.
doi: 10.1016/j.tplants.2013.07.006
URL
|
[53] |
Xu F, Gao X, Xi Z M, Zhang H, Peng X Q, Wang Z Z, Wang T M, Meng Y. Application of exogenous 24-epibrassinolide enhances proanthocyanidin biosynthesis in Vitis vinifera Cabernet Sauvignon' berry skin[J]. Plant Growth Regulation, 2015, 75(3):741-750. doi: 10.1007/s10725-014-9976-y.
doi: 10.1007/s10725-014-9976-y
URL
|
[54] |
Bogs J, Jaffé F W, Takos A M, Walker A R, Robinson S P. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development[J]. Plant Physiology, 2007, 143(3):1347-1361. doi: 10.1104/pp.106.093203.
doi: 10.1104/pp.106.093203
pmid: 17208963
|
[55] |
doi: 10.3969/j.issn.1002-0306.2007.07.068
|
|
Wan Z M, Hao Y B, Yang C M, Qi J X, Zhao L Q, Wang K J. Analysis of polyphenols in walnut seed coat by high pressure liquid chromatography[J]. Science and Technology of Food Industry, 2007, 28(7):212-213,224.
|
[56] |
Solar A, Colarič M, Usenik V, Stampar F. Seasonal variations of selected flavonoids,phenolic acids and quinones in annual shoots of common walnut( Juglans regia L.)[J]. Plant Science, 2006, 170(3):453-461. doi: 10.1016/j.plantsci.2005.09.012.
doi: 10.1016/j.plantsci.2005.09.012
URL
|
[57] |
Fukuda T, Ito H, Yoshida T. Antioxidative polyphenols from walnuts( Juglans regia L.)[J]. Phytochemistry, 2003, 63(7):795-801. doi: 10.1016/S0031-9422(03)00333-9.
doi: 10.1016/S0031-9422(03)00333-9
URL
|
[58] |
Muir R M, Ibáñez A M, Uratsu S L, Ingham E S, Leslie C A, McGranahan G H, Batra N, Goyal S, Joseph J, Jemmis E D, Dandekar A M. Mechanism of gallic acid biosynthesis in bacteria( Escherichia coli)and walnut( Juglans regia)[J]. Plant Molecular Biology, 2011, 75(6):555-565. doi: 10.1007/s11103-011-9739-3.
doi: 10.1007/s11103-011-9739-3
URL
|
[59] |
Wang H, Asker K, Zhan C, Wang N. Transcriptomic and metabolic analysis of fruit development and identification of genes involved in raffinose and hydrolysable tannin biosynthesis in walnuts[J]. Journal of Agricultural and Food Chemistry, 2021, 69(28):8050-8062. doi: 10.1021/acs.jafc.1c02434.
doi: 10.1021/acs.jafc.1c02434
pmid: 34232042
|
[60] |
Ding Z, Kuhr S, Engelhardt U H. Influence of catechins and theaflavins on the astringent taste of black tea brews[J]. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung, 1992, 195(2):108-111. doi: 10.1007/BF01201768.
doi: 10.1007/BF01201768
URL
|
[61] |
doi: 10.13305/j.cnki.jts.2015.03.003
|
|
Liu Y, Chen G S, Xu Y Q, Zhang Y N, Yin J F. Extracting characteristics of flavone and flavonol glycosides in Xihulongjing tea under different brewing conditions and their contribution to tea taste[J]. Journal of Tea Science, 2015, 35(3):217-224.
|
[62] |
赵先明, 王孝仕, 杜晓. 茶树紫色芽叶的呈味特征及降低苦涩味的研究[J]. 茶叶科学, 2009, 29(5):372-378.
|
|
Zhao X M, Wang X S, Du X. Taste characteristics of purple tea leaf and the reduction of bitterness and astringency[J]. Journal of Tea Science, 2009, 29(5):372-378.
|
[63] |
Xia E H, Zhang H B, Sheng J, Li K, Zhang Q J, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang J J, Mao S Y, Jiao J Y, Gao L Z. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 2017, 10(6):866-877. doi: 10.1016/j.molp.2017.04.002.
doi: 10.1016/j.molp.2017.04.002
URL
|
[64] |
doi: 10.3969/gab.028.000433
|
|
Ma C L, Chen L. Cloning and prokaryotic expression of flavonol synthase gene from tea plant[J]. Genomics and Applied Biology, 2009, 28(3):433-438.
|
[65] |
Shi C Y, Yang H, Wei C L, Yu O, Zhang Z Z, Jiang C J, Sun J, Li Y Y, Chen Q, Xia T, Wan X C. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds[J]. BMC Genomics, 2011, 12:131. doi: 10.1186/1471-2164-12-131.
doi: 10.1186/1471-2164-12-131
URL
|
[66] |
Jin J Q, Ma J Q, Yao M Z, Ma C L, Chen L. Functional natural allelic variants of flavonoid 3',5'-hydroxylase gene governing catechin traits in tea plant and its relatives[J]. Planta, 2017, 245(3):523-538. doi: 10.1007/s00425-016-2620-5.
doi: 10.1007/s00425-016-2620-5
pmid: 27896431
|
[67] |
doi: 10.3321/j.issn:1002-6819.2007.04.040
|
|
Qi L D, Liu S Q, Xu L, Yu W Y, Liang Q L, Hao S Q. Effects of light qualities on accumulation of oxalate,tannin and nitrate in spinach[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(4):201-205.
|
[68] |
Xu X W, Tian H L, He M, Gebretsadik K, Qi X H, Xu Q, Chen X H. Changes in catechin contents and expression of catechin biosynthesis-associated genes during early cucumber fruit development[J]. Acta Physiologiae Plantarum, 2019, 41(8):1-9. doi: 10.1007/s11738-019-2925-7.
doi: 10.1007/s11738-019-2925-7
URL
|
[69] |
Horie H, Tamaki Y. Astringency of cucumber fruit and its alleviation by cooking[J]. Journal of Cookery Science of Japan, 2008, 41(6):378-382. doi: 10.11402/cookeryscience1995.41.6_378
doi: 10.11402/cookeryscience1995.41.6_378
|
[70] |
Kaneko M, Miyake M. Analysis of formic acid,and its sensory characteristics,in each part of cucumber fruit[J]. Nippon Eiyo Shokuryo Gakkaishi, 2013, 66(5):255-259. doi: 10.4327/jsnfs.66.255.
doi: 10.4327/jsnfs.66.255
URL
|
[71] |
Teixeira A, Eiras-Dias J, Castellarin S D, Gerós H. Berry phenolics of grapevine under challenging environments[J]. International Journal of Molecular Sciences, 2013, 14(9):18711-18739. doi: 10.3390/ijms140918711.
doi: 10.3390/ijms140918711
pmid: 24030720
|
[72] |
Yaginuma S, Shiraishi T, Ohya H, Igarashi K. Polyphenol increases in safflower and cucumber seedlings exposed to strong visible light with limited water[J]. Bioscience, Biotechnology, and Biochemistry, 2002, 66(1):65-72. doi: 10.1271/bbb.66.65.
doi: 10.1271/bbb.66.65
|
[73] |
doi: 10.3864/j.issn.0578-1752.2013.14.014
|
|
Wen P F, Niu X Y, Xing Y F, Gao M Y, Niu T Q. Spatial and temporal accumulation of flavanols,activity and tissue localization of leucoanthocyanidin reductase induced by soil drought in developing grape berries[J]. Scientia Agricultura Sinica, 2013, 46(14):2979-2989.
|
[74] |
Cáceres-Mella A, Talaverano M I, Villalobos-González L, Ribalta-Pizarro C, Pastenes C. Controlled water deficit during ripening affects proanthocyanidin synthesis,concentration and composition in Cabernet sauvignon grape skins[J]. Plant Physiology and Biochemistry, 2017, 117:34-41. doi: 10.1016/j.plaphy.2017.05.015.
doi: S0981-9428(17)30172-9
pmid: 28587991
|
[75] |
Deluc L G, Quilici D R, Decendit A, Grimplet J, Wheatley M D, Schlauch K A, Mérillon J M, Cushman J C, Cramer G R. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet sauvignon and Chardonnay[J]. BMC Genomics, 2009, 10:212. doi: 10.1186/1471-2164-10-212.
doi: 10.1186/1471-2164-10-212
pmid: 19426499
|
[76] |
Alonso R, Berli F J, Piccoli P, Bottini R. Ultraviolet-B radiation,water deficit and abscisic acid:A review of independent and interactive effects on grapevines[J]. Theoretical and Experimental Plant Physiology, 2016, 28(1):11-22. doi: 10.1007/s40626-016-0053-y.
doi: 10.1007/s40626-016-0053-y
URL
|
[77] |
Akagi T, Tsujimoto T, Ikegami A, Yonemori K. Effects of seasonal temperature changes on DkMyb4 expression involved in proanthocyanidin regulation in two genotypes of persimmon( Diospyros kaki Thunb.)fruit[J]. Planta, 2011, 233(5):883-894. doi: 10.1007/s00425-010-1346-z.
doi: 10.1007/s00425-010-1346-z
URL
|
[78] |
doi: 10.13501/j.cnki.42-1569/n.2015.12.020
|
|
Zhang J X, Liu X P, Xiang J Q. Dynamic response of antioxidant systems to adversity stress in plants[J]. Journal of Hubei University for Nationalities (Natural Science Edition), 2015, 33(4):435-439.
|
[79] |
doi: 10.13304/j.nykjdb.2018.0210
|
|
Huang H N, Cheng D W, Gu H, Zhang Y, Guo X Z, Chen J Y. Effects of GA3 and TDZ on the astringent taste of Jumeigui grape berry skin[J]. Journal of Agricultural Science and Technology, 2019, 21(2):120-132.
|
[80] |
Luan L Y, Zhang Z W, Xi Z M, Huo S S, Ma L N. Comparing the effects of exogenous abscisic acid on the phenolic composition of Yan 73 and Cabernet sauvignon( Vitis vinifera L.)wines[J]. European Food Research and Technology, 2014, 239(2):203-213. doi: 10.1007/s00217-014-2206-z.
doi: 10.1007/s00217-014-2206-z
URL
|
[81] |
doi: 10.3969/mpb.011.000647
|
|
Luo X W, Liu M, Qi X H, Xu Q, Chen X H. Molecular research progress in fruit astringent[J]. Molecular Plant Breeding, 2013, 11(5):647-656.
|