[1] |
Wicks J, Beline M, Gomez J F M, Luzardo S, Silva S L, Gerrard D. Muscle energy metabolism,growth,and meat quality in beef cattle[J]. Agriculture, 2019, 9(9):195.doi: 10.3390/agriculture9090195.
URL
|
[2] |
Roudbari Z, Coort S L, Kutmon M, Eijssen L, Melius J, Sadkowski T, Evelo C T. Identification of biological pathways contributing to marbling in skeletal muscle to improve beef cattle breeding[J]. Veterinary and Animal Science, 2020, 10:1370.doi: 10.3389/fgene.2019.01370.
|
[3] |
Chen D, Li W F, Du M, Cao B H. Adipogenesis,fibrogenesis and myogenesis related gene expression in longissimus muscle of high and low marbling beef cattle[J]. Livestock Science, 2019, 229:188-193.doi: 10.1016/j.livsci.2019.09.032.
URL
|
[4] |
Nguyen D V, Nguyen O C, Malau-Aduli A E O. Main regulatory factors of marbling level in beef cattle[J]. Veterinary and Animal Science, 2021, 14:100219.doi: 10.1016/j.vas.2021.100219.
URL
|
[5] |
Zhang R, Xia L Q, Lu W W, Zhang J, Zhu J S. LncRNAs and cancer[J]. Oncology Letters, 2016, 12(2):1233-1239.doi: 10.3892/ol.2016.4770.
pmid: 27446422
|
[6] |
Muskovic W, Slavich E, Maslen B, Kaczorowski D C, Cursons J, Crampin E, Kavallaris M. High temporal resolution RNA-seq time course data reveals widespread synchronous activation between mammalian lncRNAs and neighboring protein-coding genes[J]. Genome Research, 2022, 32(8):1463-1473.doi: 10.1101/gr.276818.122.
URL
|
[7] |
Cao H F, Xu D Y, Cai Y, Han X E, Tang L, Gao F, Qi Y, Cai D D, Wang H F, Ri M, Antonets D, Vyatkin Y, Chen Y, You X, Wang F, Nicolas E, Kapranov P. Very long intergenic non-coding(vlinc)RNAs directly regulate multiple genes in cis and trans[J]. BMC Biology, 2021, 19(1):108.doi: 10.1186/s12915-021-01044-x.
|
[8] |
De la Fuente-Hernandez M A, Sarabia-Sanchez M A, Melendez-Zajgla J, Maldonado-Lagunas V. lncRNAs in mesenchymal differentiation[J]. American Journal of Physiology-Cell Physiology, 2022, 322(3):C421-C460.doi: 10.1152/ajpcell.00364.2021.
URL
|
[9] |
Song C C, Yang Z X, Jiang R, Cheng J, Yue B L, Wang J, Sun X M, Huang Y Z, Lan X Y, Lei C Z, Chen H. lncRNA IGF2 AS regulates bovine myogenesis through different pathways[J]. Molecular Therapy Nucleic Acids, 2020, 21:874-884.doi: 10.1016/j.omtn.2020.07.002.
URL
|
[10] |
Grammatikakis I, Lal A. Significance of lncRNA abundance to function[J]. Mammalian Genome, 2022, 33(2):271-280.doi: 10.1007/s00335-021-09901-4.
|
[11] |
Zhang L D, Zhang S, Wang R X, Sun L. Genome-wide identification of long noncoding RNA and their potential interactors in ISWI mutants[J]. International Journal of Molecular Sciences, 2022, 23(11):6247.doi: 10.3390/ijms23116247.
URL
|
[12] |
Qi R L, Qiu X Y, Zhang Y, Wang J, Wang Q, Wu M, Huang J X, Yang F F. Comparison of LncRNA expression profiles during myogenic differentiation and adipogenic transdifferentiation of myoblasts[J]. International Journal of Molecular Sciences, 2019, 20(15):3725.doi: 10.3390/ijms20153725.
URL
|
[13] |
Policarpo R, Sierksma A, De Strooper B, D'Ydewalle C. From junk to function:lncRNAs in CNS health and disease[J]. Frontiers in Molecular Neuroscience, 2021, 14:714768.doi: 10.3389/fnmol.2021.714768.
URL
|
[14] |
Beak S H, Baik M. Comparison of transcriptome between high-and low-marbling fineness in longissimus thoracis muscle of Korean cattle[J]. Animal Bioscience, 2022, 35(2):196-203.doi: 10.5713/ab.21.0150.
URL
|
[15] |
Bai Y B, Li X P, Chen Z C, Li J S, Tian H S, Ma Y, Raza S H A, Shi B G, Han X M, Luo Y Z, Hu J, Wang J Q, Liu X, Li S B, Zhao Z D. Interference with ACSL1 gene in bovine adipocytes:transcriptome profiling of mRNA and lncRNA related to unsaturated fatty acid synthesis[J]. Frontiers in Veterinary Science, 2021, 8:788316.doi: 10.3389/fvets.2021.788316.
URL
|
[16] |
Wang H, Zhong J C, Zhang C F, Chai Z X, Cao H W, Wang J K, Zhu J J, Wang J B, Ji Q M. The whole-transcriptome landscape of muscle and adipose tissues reveals the ceRNA regulation network related to intramuscular fat deposition in yak[J]. BMC Genomics, 2020, 21(1):347.doi: 10.1186/s12864-020-6757-z.
pmid: 32381004
|
[17] |
朱运昌, 闪欣悦, 王豪靖, 赵雅迪, 景毓佳, 刘格格, 郝瑞杰, 马云, 魏雪锋. 皮南牛与南阳牛脂肪组织差异表达lncRNA筛选及其调控网络构建[J]. 农业生物技术学报, 2022, 30(10):1913-1925.doi: 10.3969/j.issn.1674-7968.2022.10.006.
|
|
Zhu Y C, Shan X Y, Wang H J, Zhao Y D, Jing Y J, Liu G G, Hao R J, Ma Y, Wei X F. Screening of differentially expressed LncRNA in adipose tissues of pinan and Nanyang cattle(Bos taurus)and construction of regulatory networks[J]. Journal of Agricultural Biotechnology, 2022, 30(10):1913-1925.
|
[18] |
Gao H, Kerr A, Jiao H, Hon C C, Ryd n M, Dahlman I, Arner P. Long non-coding RNAs associated with metabolic traits in human white adipose tissue[J]. EBioMedicine, 2018, 30:248-260.doi: 10.1016/j.ebiom.2018.03.010.
pmid: 29580841
|
[19] |
Sun J, Ruan Y T, Wang M, Chen R P, Yu N, Sun L, Liu T M, Chen H. Differentially expressed circulating LncRNAs and mRNA identified by microarray analysis in obese patients[J]. Scientific Reports, 2016, 6:35421.doi: 10.1038/srep35421.
pmid: 27767123
|
[20] |
Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp:an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):i884-i890.doi: 10.1093/bioinformatics/bty560.
URL
|
[21] |
Langmead B, Salzberg S L. Fast gapped-read alignment with bowtie 2[J]. Nature methods, 2012, 9(4):357-359.doi: 10.1038/nmeth.1923.
pmid: 22388286
|
[22] |
Kim D, Langmead B, Salzberg S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature methods Nucleic Acids, 2015, 12(4):357-360.doi: 10.1038/nmeth.3317.
|
[23] |
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3):290-295.doi: 10.1038/nbt.3122.
pmid: 25690850
|
[24] |
Kang Y J, Yang D C, Kong L, Hou M, Meng Y Q, Wei L P, Gao G. CPC2:a fast and accurate coding potential calculator based on sequence intrinsic features[J]. Nucleic Acids Research, 2017, 45(W1):W12-W16.doi: 10.1093/nar/gkx428.
URL
|
[25] |
Sun L, Luo H T, Bu D C, Zhao G G, Yu K T, Zhang C H, Liu Y N, Chen R S, Zhao Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts[J]. Nucleic Acids Research, 2013, 41(17):e166.doi: 10.1093/nar/gkt646.
URL
|
[26] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.doi: 10.1186/s13059-014-0550-8.
URL
|
[27] |
Bao G L, Li S B, Zhao F F, Wang J Q, Liu X, Hu J, Shi B G, Wen Y L, Zhao L, Luo Y Z. Comprehensive transcriptome analysis reveals the role of lncRNA in fatty acid metabolism in the longissimus thoracis muscle of Tibetan sheep at different ages[J]. Frontiers in Nutrition, 2022, 9:847077.doi: 10.3389/fnut.2022.847077.
URL
|
[28] |
Muniz M M M, Fonseca L F S, Scalez D C B, Vega A S, Silva D B D S, Ferro J A, Chardulo A L, Baldi F, C novas A, de Albuquerque L G D. Characterization of novel lncRNA muscle expression profiles associated with meat quality in beef cattle[J]. Evolutionary Applications, 2022, 15(4):706-718.doi: 10.1111/eva.13365.
URL
|
[29] |
Lei Z X, Wu H G, Xiong Y, Wei D W, Wang X P, Luoreng Z M, Cai X Y, Ma Y. NcRNAs regulate bovine adipose tissue deposition[J]. Molecular and Cellular Biochemistry, 2021, 476(7):2837-2845.doi: 10.1007/s11010-021-04132-2.
pmid: 33730298
|
[30] |
Zuo C Q, Pan Y Q, Leng D, Chen X J, Dongfang H N, Lin Z Y, Dai Z, Wang Z G. Transcriptome analysis of long non-coding RNAs reveals NR_015556 lncRNA is a novel regulator for adipocyte differentiation[J]. Biochemical and Biophysical Research Communications, 2022, 601:79-85.doi: 10.1016/j.bbrc.2022.02.069.
pmid: 35231655
|
[31] |
Zhu E D, Zhang J J, Li Y C, Yuan H R, Zhou J, Wang B L. Long noncoding RNA Plnc1 controls adipocyte differentiation by regulating peroxisome proliferator-activated receptor γ[J]. The FASEB Journal, 2019, 33(2):2396-2408.doi: 10.1096/fj.201800739RRR.
URL
|
[32] |
Huang J P, Zheng Q Z, Wang S Z, Wei X F, Li F, Ma Y. High-throughput RNA sequencing reveals NDUFC2-AS lncRNA promotes adipogenic differentiation in Chinese buffalo( Bubalus bubalis L.)[J]. Journal of Fungi, 2019, 10(9):E689.doi: 10.3390/genes10090689.
|
[33] |
赵丽玲, 王会, 柴志欣, 王吉坤, 王嘉博, 武志娟, 信金伟, 钟金城, 姬秋梅. 牦牛 lncFAM200B的克隆鉴定、表达及生物信息学分析[J]. 华北农学报, 2020, 35(5):220-230.doi: 10.7668/hbnxb.20191071.
|
|
Zhao L L, Wang H, Chai Z X, Wang J K, Wang J B, Wu Z J, Xin J W, Zhong J C, Ji Q M. Cloning,expression and bioinformatics analysis of yak lncFAM200B[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(5):220-230.
|
[34] |
Li M X, Gao Q S, Tian Z C, Lu X B, Sun Y J, Chen Z, Zhang H M, Mao Y J, Yang Z P. MIR221HG is a novel long noncoding RNA that inhibits bovine adipocyte differentiation[J]. Genes, 2019, 11(1):29.doi: 10.3390/genes11010029.
URL
|
[35] |
Yan W, Zhou H T, Hu J, Luo Y Z, Hickford J G H. Variation in the FABP4 gene affects carcass and growth traits in sheep[J]. Meat Science, 2018, 145:334-339.doi: 10.1016/j.meatsci.2018.07.007.
URL
|
[36] |
Yan W, Kan X D, Wang Y T, Zhang Y H. Expression of key genes involved in lipid deposition in intramuscular adipocytes of sheep under high glucose conditions[J]. Journal of Animal Physiology and Animal Nutrition, 2023, 107(2): 444-452.doi: 10.1111/jpn.13750.
URL
|
[37] |
Li S J, Khan R, Raza S H A, Hong J Y, Mei C G, Kaster N, Cheng G, Zhao C P, Schreurs N M, Zan L S. Function and characterization of the promoter region of perilipin 1(PLIN1):roles of E2F1,PLAG1,C/EBPβ,and SMAD3 in bovine adipocytes[J]. Genomics, 2020, 112(3):2400-2409.doi: 10.1016/j.ygeno.2020.01.012.
URL
|
[38] |
Kong Y Y, Yuan Z H, Liu X, Li F D, Yue X P. A novel SNP within LIPE gene is highly associated with sheep intramuscular fat content[J]. Small Ruminant Research, 2022, 209:106658.doi: 10.1016/j.smallrumres.2022.106658.
URL
|
[39] |
Goszczynski D E, Mazzucco J P, Ripoli M V, Villarreal E L, Rogberg-Muñoz A, Mezzadra C A, Melucci L M, Giovambattista G. Characterization of the bovine gene LIPE and possible influence on fatty acid composition of meat[J]. Meta Gene, 2014, 2:746-760.doi: 10.1016/j.mgene.2014.09.001.
pmid: 25606458
|
[40] |
Zhang J, Hou Y J, Du X L, Chen D, Sui G Z, Qi Y, Licinio J, Wong M L, Yang Y L. ADORA1-driven brain-sympathetic neuro-adipose connections control body weight and adipose lipid metabolism[J]. Molecular Psychiatry, 2021, 26(7):2805-2819.doi: 10.1038/s41380-020-00908-y.
|
[41] |
Michal J J, Zhang Z W, Gaskins C T, Jiang Z. The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu×Limousin F 2 crosses[J]. Animal Genetics, 2006, 37(4):400-402.doi: 10.1111/j.1365-2052.2006.01464.x.
pmid: 16879357
|
[42] |
Liu R L, Liu X X, Bai X J, Xiao C Z, Dong Y J. Different expression of lipid metabolism-related genes in Shandong black cattle and Luxi cattle based on transcriptome analysis[J]. Scientific Reports, 2020, 10(1):21915.doi: 10.1038/s41598-020-79086-4.
pmid: 33318614
|
[43] |
|
|
Wang S Y, Liu D, Zhang W H, Wang G F, Gao S X. Analysis of the difference of fat deposition in different adipose tissues of cattle based on transcriptome sequencing[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(12):1755-1766.
|
[44] |
Martínez Del Pino L, Urrutia O, Arana A, Alfonso L, Mendizabal J A, Soret B. Expression of key myogenic,fibrogenic and adipogenic genes in Longissimus thoracis and Masseter muscles in cattle[J]. Animal, 2020, 14(7):1510-1519.doi: 10.1017/S1751731120000051.
pmid: 31996275
|
[45] |
Li S J, Raza S H A, Zhao C P, Cheng G, Zan L S. Overexpression of PLIN1 promotes lipid metabolism in bovine adipocytes[J]. Animals, 2020, 10(11): E1944.doi: 10.3390/ani10111944.
|
[46] |
Li B J, Weng Q N, Dong C, Zhang Z K, Li R Y, Liu J G, Jiang A W, Li Q F, Jia C, Wu W J, Liu H L. A key gene, PLIN1,can affect Porcine intramuscular fat content based on transcriptome analysis[J]. Genes, 2018, 9(4):E194.doi: 10.3390/genes9040194.
|
[47] |
Cai R, Tang G R, Zhang Q, Yong W L, Zhang W R, Xiao J Y, Wei C S, He C, Yang G S, Pang W J. A novel lnc-RNA,named lnc-ORA,is identified by RNA-seq analysis,and its knockdown inhibits adipogenesis by regulating the PI3K/AKT/mTOR signaling pathway[J]. Cells, 2019, 8(5):E477.doi: 10.3390/cells8050477.
|
[48] |
Moreno-Navarrete J M, Escoté X, Ortegaó F, Camps M, Ricart W, Zorzano A, Vendrell J, Vidal-Puig A, Fernández-Real J M. Lipopolysaccharide binding protein is an adipokine involved in the resilience of the mouse adipocyte to inflammation[J]. Diabetologia, 2015, 58(10):2424-2434.doi: 10.1007/s00125-015-3692-7.
pmid: 26201685
|
[49] |
Moreno-Navarrete J M, Jové M, Padro' T, Boadaó J, Ortega F, Ricart W, Pamplona R, Badimón L, Portero-Otín M, Fernández-Real J M. Adipocyte lipopolysaccharide binding protein(LBP)is linked to a specific lipidomic signature[J]. Obesity, 2017, 25(2):391-400.doi: 10.1002/oby.21711.
pmid: 28001010
|
[50] |
Long K R, Li X K, Zhang R W, Gu Y R, Du M J, Xing X Y, Du J X, Mai M M, Wang J, Jin L, Tang Q Z, Hu S L, Ma J D, Wang X, Pan D K, Li M Z. Transcriptomic analysis elucidates the enhanced skeletal muscle mass,reduced fat accumulation,and metabolically benign liver in human follistatin-344 transgenic pigs[J]. Journal of Integrative Agriculture, 2022, 21(9):2675-2690.doi: 10.1016/j.jia.2022.07.014.
URL
|
[51] |
Kulyt A, Lundbck V, Arner P, Strawbridge R J, Dahlman I. Shared genetic loci for body fat storage and adipocyte lipolysis in humans[J]. Scientific Reports, 2022, 12(1):3666.doi: 10.1038/s41598-022-07291-4.
pmid: 35256633
|
[52] |
Zhang H B, Guan W K. The response of gene expression associated with intramuscular fat deposition in the longissimus dorsi muscle of Simmental × Yellow breed cattle to different energy levels of diets[J]. Animal Science Journal, 2019, 90(4):493-503.doi: 10.1111/asj.13170.
URL
|