[1] |
Harland D P. Introduction to hair development[J]. Advances in Experimental Medicine and Biology, 2018, 1054:89-96.doi: 10.1007/978-981-10-8195-8_8.
pmid: 29797270
|
[2] |
Shin J M, Ko J W, Choi C W, Lee Y, Seo Y J, Lee J H, Kim C D. Deficiency of Crif1 in hair follicle stem cells retards hair growth cycle in adult mice[J]. PLoS One, 2020, 15(4):e0232206.doi: 10.1371/journal.pone.0232206.
URL
|
[3] |
Langbein L, Schweizer J. Keratins of the human hair follicle[J]. International Review of Cytology, 2005, 243:1-78.doi: 10.1016/S0074-7696(05)43001-6.
|
[4] |
Lan J Q, Zhou Y J, Wang H Y, Tang J S, Kang Y Y, Wang P S, Liu X B, Peng Y. Protective effect of human umbilical cord mesenchymal stem cell derived conditioned medium in a mutant TDP-43 induced Motoneuron-like cellular model of ALS[J]. Brain Research Bulletin, 2023, 193:106-116.doi: 10.1016/j.brainresbull.2022.12.008.
pmid: 36563944
|
[5] |
Kim H, Jang Y, Kim E H, Jang H, Cho H, Han G, Song H K, Kim S H, Yang Y. Potential of colostrum-derived exosomes for promoting hair regeneration through the transition from telogen to anagen phase[J]. Frontiers in Cell and Developmental Biology, 2022, 10:815205.doi: 10.3389/fcell.2022.815205.
URL
|
[6] |
Yan H L, Jin M H, Li Y, Gao Y, Ding Q, Wang X L, Zeng W X, Chen Y L. MiR-1 regulates differentiation and proliferation of goat hair follicle stem cells by targeting IGF1R and LEF1 genes[J]. DNA and Cell Biology, 2022, 41(2):190-201.doi: 10.1089/dna.2021.0288.
URL
|
[7] |
Lei M X, Guo H Y, Qiu W M, Lai X D, Yang T, Widelitz R B, Chuong C M, Lian X H, Yang L. Modulating hair follicle size with Wnt10b/DKK1 during hair regeneration[J]. Experimental Dermatology, 2014, 23(6):407-413.doi: 10.1111/exd.12416.
pmid: 24750467
|
[8] |
Albrecht L V, Tejeda-Muñoz N, De Robertis E M. Cell biology of canonical Wnt signaling[J]. Annual Review of Cell and Developmental Biology, 2021, 37:369-389.doi: 10.1146/annurev-cellbio-120319-023657.
pmid: 34196570
|
[9] |
Huang J, Pu Y J, Zhang H S, Xie L P, He L, Zhang C L, Cheng C K, Huo Y S, Wan S, Chen S L, Huang Y H, Lau C W, Wang L, Xia Y S, Huang Y, Luo J Y. KLF2 mediates the suppressive effect of laminar flow on vascular calcification by inhibiting endothelial BMP/SMAD1/5 signaling[J]. Circulation Research, 2021, 129(4):e87-e100.doi: 10.1161/CIRCRESAHA.120.318690.
pmid: 34157851
|
[10] |
Plasari G, Edelmann S, Högger F, Dusserre Y, Mermod N, Calabrese A. Nuclear factor I-C regulates TGF-{beta}-dependent hair follicle cycling[J]. The Journal of Biological Chemistry, 2010, 285(44):34115-34125.doi: 10.1074/jbc.M110.120659.
URL
|
[11] |
Tong X M, Coulombe P A. Keratin 17 modulates hair follicle cycling in a TNFalpha-dependent fashion[J]. Genes & Development, 2006, 20(10):1353-1364.doi: 10.1101/gad.1387406.
URL
|
[12] |
Foitzik K, Lindner G, Mueller-Roever S, Maurer M, Botchkareva N, Botchkarev V, Handjiski B, Metz M, Hibino T, Soma T, Dotto G P, Paus R. Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo[J]. FASEB Journal, 2000, 14(5):752-760.doi: 10.1096/fasebj.14.5.752.
pmid: 10744631
|
[13] |
Peters E M J, Hansen M G, Overall R W, Nakamura M, Pertile P, Klapp B F, Arck P C, Paus R. Control of human hair growth by neurotrophins:brain-derived neurotrophic factor inhibits hair shaft elongation,induces catagen,and stimulates follicular transforming growth factor β2 expression[J]. Journal of Investigative Dermatology, 2005, 124(4):675-685.doi: 10.1111/j.0022-202x.2005.23648.x.
pmid: 15816823
|
[14] |
Bikle D, Christakos S. New aspects of vitamin D metabolism and action-addressing the skin as source and target[J]. Nature Reviews Endocrinology, 2020, 16(4):234-252.doi: 10.1038/s41574-019-0312-5.
|
[15] |
Rishikaysh P, Dev K, Diaz D, Qureshi W M S, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development[J]. International Journal of Molecular Sciences, 2014, 15(1):1647-1670.doi: 10.3390/ijms15011647.
pmid: 24451143
|
[16] |
Wang L C, Liu Z Y, Gambardella L, Delacour A, Shapiro R, Yang J, Sizing I, Rayhorn P, Garber E A, Benjamin C D, Williams K P, Taylor F R, Barrandon Y, Ling L, Burkly L C. Regular articles:conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration[J]. The Journal of Investigative Dermatology, 2000, 114(5):901-908.doi: 10.1046/j.1523-1747.2000.00951.x.
URL
|
[17] |
Zhao R R, Li J, Liu N, Li H G, Liu L R, Yang F, Li L L, Wang Y, He J N. Transcriptomic analysis reveals the involvement of lncRNA-miRNA-mRNA networks in hair follicle induction in Aohan Fine Wool Sheep skin[J]. Frontiers in Genetics, 2020, 11:590.doi: 10.3389/fgene.2020.00590.
pmid: 33117415
|
[18] |
郭杨. 羊绒周期性生长特异性lncRNAs的筛选[D]. 杨凌: 西北农林科技大学, 2015.
|
|
Guo Y. Screening of specific long non-coding RNAs regulating periodic growth of cashmere[D]. Yangling: Northwest A&F University, 2015.
|
[19] |
Si Y, Bai J Z, Wu J, Li Q, Mo Y, Fang R H, Lai W. LncRNA PlncRNA-1 regulates proliferation and differentiation of hair follicle stem cells through TGF-β1-mediated Wnt/β-catenin signal pathway[J]. Molecular Medicine Reports, 2018, 17(1):1191-1197.doi: 10.3892/mmr.2017.7944.
|
[20] |
Zheng Y Y, Wang Z Y, Zhu Y B, Wang W, Bai M, Jiao Q, Wang Y R, Zhao S J, Yin X B, Guo D, Bai W L. LncRNA-000133 from secondary hair follicle of Cashmere goat:identification,regulatory network and its effects on inductive property of dermal papilla cells[J]. Animal Biotechnology, 2020, 31(2):122-134.doi: 10.1080/10495398.2018.1553788.
URL
|
[21] |
Jiao Q, Yin R H, Zhao S J, Wang Z Y, Zhu Y B, Wang W, Zheng Y Y, Yin X B, Guo D, Wang S Q, Zhu Y X, Bai W L. Identification and molecular analysis of a lncRNA-HOTAIR transcript from secondary hair follicle of Cashmere goat reveal integrated regulatory network with the expression regulated potentially by its promoter methylation[J]. Gene, 2019, 688:182-192.doi: 10.1016/j.gene.2018.11.084.
pmid: 30521888
|
[22] |
Sun H R, Meng K, Wang Y F, Wang Y Y, Yuan X C, Li X H. LncRNAs regulate the cyclic growth and development of hair follicles in Dorper sheep[J]. Frontiers in Veterinary Science, 2023, 10:1186294.doi: 10.3389/fvets.2023.1186294.
URL
|
[23] |
王雅艳. 绵羊脱毛性状相关miRNA的筛选与验证[D]. 银川: 宁夏大学, 2022.
|
|
Wang Y Y. Screening and verification of miRNA related to sheep depilation traits[D]. Yinchuan: Ningxia University, 2022.
|
[24] |
王翊帆. 杜泊羊脱毛性状相关基因的筛选与差异基因的功能分析[D]. 银川: 宁夏大学, 2022.
|
|
Wang Y F. Screening of genes related to hair shedding traits in Dorper sheep and functional analysis of differential genes[D]. Yinchuan: Ningxia University, 2022.
|
[25] |
吴翠玲. 疆南绒山羊绒毛性状相关基因筛选与ELOVL3和FA2H基因功能验证[D]. 乌鲁木齐: 新疆农业大学, 2022.
|
|
Wu C L. Screening of cashmere trait-related genes and functional validation of ELOVL3 and FA2H genes in Xinjiang southern cashmere goats[D]. Wulumuqi: Xinjiang Agricultural University, 2022.
|
[26] |
Goldstein N B, Steel A, Barbulescu C C, Koster M I, Wright M J, Jones K L, Gao B F, Ward B, Woessner B, Trottier Z, Pakieser J, Hu J X, Lambert K A, Shellman Y G, Fujita M, Robinson W A, Roop D R, Norris D A, Birlea S A. Melanocyte precursors in the hair follicle bulge of repigmented vitiligo skin are controlled by RHO-GTPase,KCTD10,and CTNNB1 signaling[J]. Journal of Investigative Dermatology, 2021, 141(3):638-647.e13.doi: 10.1016/j.jid.2020.07.016.
URL
|
[27] |
Zhou H, Huang S N, Lü X Y, Wang S H, Cao X K, Yuan Z H, Getachew T, Mwacharo J M, Haile A, Quan K, Li Y T, Reverter A, Sun W. Effect of CUX1 on the proliferation of Hu Sheep dermal papilla cells and on the Wnt/β-Catenin signaling pathway[J]. Genes, 2023, 14(2):423.doi: 10.3390/genes14020423.
URL
|
[28] |
Jin H, Zou Z Z, Chang H C, Shen Q, Liu L F, Xing D. Photobiomodulation therapy for hair regeneration:a synergetic activation of β-CATENIN in hair follicle stem cells by ROS and paracrine WNTs[J]. Stem Cell Reports, 2021, 16(6):1568-1583.doi: 10.1016/j.stemcr.2021.04.015.
URL
|
[29] |
Nakatake Y, Hoshikawa M, Asaki T, Kassai Y, Itoh N. Identification of a novel fibroblast growth factor,FGF-22,preferentially expressed in the inner root sheath of the hair follicle[J]. Biochimica et Biophysica Acta, 2001, 1517(3):460-463.doi: 10.1016/s0167-4781(00)00302-x.
pmid: 11342227
|
[30] |
Zhao J G, Lin H J, Wang L S, Guo K K, Jing R R, Li X N, Chen Y, Hu Z L, Gao S, Xu N. Suppression of FGF5 and FGF18 expression by cholesterol-modified siRNAs promotes hair growth in mice[J]. Frontiers in Pharmacology, 2021, 12:666860.doi: 10.3389/fphar.2021.666860.
URL
|
[31] |
He X L, Chao Y, Zhou G X, Chen Y L. Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats[J]. Gene, 2016, 575(2 pt 2):393-398.doi: 10.1016/j.gene.2015.09.034.
pmid: 26390813
|
[32] |
Hung B S, Wang X Q, Rothnagel J A, Cam G R. Characterization of mouse Frizzled-3 expression in hair follicle development and identification of the human homolog in keratinocytes[J]. The Journal of Investigative Dermatology, 2001, 116(6):940-946.doi: 10.1046/j.1523-1747.2001.01336.x.
URL
|
[33] |
Chang C H, Tsai R K, Tsai M H, Lin Y H, Hirobe T. The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines[J]. Journal of Dermatological Science, 2014, 75(2):100-108.doi: 10.1016/j.jdermsci.2014.04.012.
URL
|
[34] |
Li Y H, Zhang K, Ye J X, Lian X H, Yang T. Wnt10b promotes growth of hair follicles via a canonical Wnt signalling pathway[J]. Clinical and Experimental Dermatology, 2011, 36(5):534-540.doi: 10.1111/j.1365-2230.2011.04019.x.
pmid: 21392083
|
[35] |
Ye J X, Yang T, Guo H Y, Tang Y H, Deng F, Li Y H, Xing Y Z, Yang L, Yang K. Wnt10b promotes differentiation of mouse hair follicle melanocytes[J]. International Journal of Medical Sciences, 2013, 10(6):691-698.doi: 10.7150/ijms.6170.
pmid: 23569433
|
[36] |
Nguyen B C Q, Taira N, Maruta H, Tawata S. Artepillin C and other herbal PAK1-blockers:effects on hair cell proliferation and related PAK1-dependent biological function in cell culture[J]. Phytotherapy Research, 2016, 30(1):120-127.doi: 10.1002/ptr.5510.
pmid: 26537230
|
[37] |
|
|
Liu L H. Study on clinical features and molecular genetics of autosomal recessive hereditary hypotrichosis[D]. Hefei: Anhui Medical University, 2013.
|
[38] |
Dai Z P, Chen J, Chang Y Q, Christiano A M. Selective inhibition of JAK3 signaling is sufficient to reverse alopecia areata[J]. JCI Insight, 2021, 6(7):142205.doi: 10.1172/jci.insight.142205.
|
[39] |
Peters E M J, Liotiri S, Bodó E, Hagen E, BíróT, Arck P C, Paus R. Probing the effects of stress mediators on the human hair follicle:substance P holds central position[J]. The American Journal of Pathology, 2007, 171(6):1872-1886.doi: 10.2353/ajpath.2007.061206.
URL
|
[40] |
Nasr Z, Dow L E, Paquet M, Chu J, Ravindar K, Somaiah R, Deslongchamps P, Porco J A Jr, Lowe S W, Pelletier J. Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia[J]. BMC Pharmacology and Toxicology, 2013, 14:58.doi: 10.1186/2050-6511-14-58.
URL
|