[1] |
Tan G X, Liu K, Kang J M, Xu K D, Zhang Y, Hu L Z, Zhang J, Li C W.Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing[J]. Frontiers in Plant Science, 2015, 6:428.doi: 10.3389/fpls.2015.00428.
|
[2] |
Manzo D, Ferriello F, Puopolo G, Zoina A, D'Esposito D, Tardella L, Ferrarini A, Ercolano M R. Fusarium oxysporum f.sp. radicis-lycopersici induces distinct transcriptome reprogramming in resistant and susceptible isogenic tomato lines[J]. BMC Plant Biol, 2016, 16:53.doi: 10.1186/s12870-016-0740-5.
|
[3] |
Zhao T T, Jiang J B, Liu G, He S S, Zhang H, Chen X L, Li J F, Xu X Y.Mapping and candidate gene screening of tomato Cladosporium fulvum-resistant gene Cf-19,based on high-throughput sequencing technology[J]. BMC Plant Biology, 2016, 16:51.doi: 10.1186/s12870-016-0737-0.
|
[4] |
Xue D Q, Chen X L, Zhang H, Chai X F, Jiang J B, Xu X Y, Li J F.Transcriptome analysis of the Cf-12-mediated resistance response to Cladosporium fulvum in tomato[J]. Frontiers in Plant Science, 2017, 7:2012.doi: 10.3389/fpls.2016.02012.
|
[5] |
Xu W B, Chen L, He P, Yang J, Xu C D, Wang B, Wang Z J, Yang H Y, Xie M H, Yang S M, Qiu L, Wang Y Y.Analysis of Cf-12 tomato transcriptome profile in response to Cladosporium fulvum infection with Hisat,StringTie and Ballgown[J]. International Journal of Agriculture and Biology, 2018, 20:2590-2598.doi: 10.17957/IJAB/15.0834.
|
[6] |
Li M, Zhao J, Su Y L.Transcriptome analysis of gene expression profiles of Tomato yellow leaf curl virus-infected whiteflies over different viral acquisition access periods[J]. Insects, 2020, 11(5):297.doi: 10.3390/insects11050297.
|
[7] |
|
|
Zhang G R,Pang S Q,Guo X S,Shan S L.Transcriptome analysis of salt-tolerance-related genes in processing tomato salt-tolerant mutants[J].Molecular Plant Breeding,2018,16(18):5884-5896.
|
[8] |
|
|
Zhu X L,Wei X H,Wang B Q,Wang X,Zhang M J.Transcriptome analysis of tomato under salt stress induced by c-GMP[J].Acta Agriculturae Zhejiangensis,2020,32(10):1788-1797.
|
[9] |
Ishihara T, Mitsuhara I, Takahashi H, Nakaho K.Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato[J]. PLoS One, 2012, 7(10):e46763.doi: 10.1371/journal.pone.0046763.
|
[10] |
French E, Kim B S, Rivera-Zuluaga K, Iyer-Pascuzzi A S.Whole root transcriptomic analysis suggests a role for auxin pathways in resistance to Ralstonia solanacearum in tomato[J]. Molecular Plant Microbe Interactions, 2018, 31(4):432-444.doi: 10.1094/MPMI-08-17-0209-R.
|
[11] |
Zuluaga A P, Solé M, Lu H B, Góngora-Castillo E, Vaillancourt B, Coll N, Buell C R, Valls M.Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii[J]. BMC Genomics, 2015, 16(1):246.doi: 10.1186/s12864-015-1460-1.
|
[12] |
Chen N, Yu B W, Dong R Y, Lei J J, Chen C M, Cao B H.RNA-Seq-derived identification of differential transcription in the eggplant( Solanum melongena)following inoculation with bacterial wilt[J]. Gene, 2018, 644:137-147.doi: 10.1016/j.gene.2017.11.003.
|
[13] |
|
|
Xie B,Zhan X X,Luo Y H,Liu B X,Kong F L,Yuan J C.Transcriptome analysis of the effect of different rootstocks on the resistance of grafted flue-cured tobacco to bacterial wilt[J].Acta Agriculturae Boreali-Sinica,2020,35(4):177-186.
URL
|
[14] |
李锡香,杜永臣,沈镝,冯兰香,王海平,宋江萍,王立浩.番茄种质资源描述规范和数据标准[M].北京:中国农业出版社,2006.
|
|
Li X X,Du Y C,Shen D,Feng L X,Wang H P,Song J P,Wang L H.Descriptors and data standard for tomato(Lycopersicon esculentum Mill.)[M].Beijing:China Agriculture Press,2006.
|
[15] |
Kim D, Langmead B, Salzberg S L.HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4):357-360.doi: 10.1038/nmeth.3317.
|
[16] |
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L.StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3):290-295.doi: 10.1038/nbt.3122.
|
[17] |
Love M I, Huber W, Anders S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.doi: 10.1186/s13059-014-0550-8.
|
[18] |
Tatusov R L, Galperin M Y, Natale D A, Koonin E V.The COG database:A tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Research, 2000, 28(1):33-36.doi: 10.1093/nar/28.1.33.
|
[19] |
Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G.Gene Ontology:tool for the unification of biology[J]. Nature Genetics, 2000, 25(1):25-29.doi: 10.1038/75556.
|
[20] |
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M.The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32:D277-D280.doi: 10.1093/nar/gkh063.
|
[21] |
Koonin E V, Fedorova N D, Jackson J D, Jacobs A R, Krylov D M, Makarova K S, Mazumder R, Mekhedov S L, Nikolskaya A N, Rao B S, Rogozin I B, Smirnov S, Sorokin A V, Sverdlov A V, Vasudevan S, Wolf Y I, Yin J J, Natale D A.A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes[J]. Genome Biology, 2004, 5(2):R7.doi: 10.1186/gb-2004-5-2-r7.
|
[22] |
|
|
Deng Y Y,Li J Q,Wu S F,Zhu Y P,Chen Y W,He F C.Integrated nr database in protein annotation system and its localization[J].Computer Engineering,2006,32(5):71-73,76.
|
[23] |
Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer E L L, Tate J, Punta M.Pfam:the protein families database[J]. Nucleic Acids Research, 2014, 42(D1):222-230.doi: 10.1093/nar/gkt1223.
|
[24] |
Apweiler R, Bairoch A, Wu C H, Barker W C, Boeckmann B, Ferro S, Gasteiger E, Huang H Z, Lopez R, Magrane M, Martin M J, Natale D A, O'Donovan C, Redaschi N, Yeh L S L.UniProt:the universal protein knowledgebase[J]. Nucleic Acids Research, 2004, 32(S1):D115-D119.doi: 10.1093/nar/gkh131.
|
[25] |
Consortium T G.The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature, 2012, 485:635-641.doi: 10.1038/nature11119.
|
[26] |
Hu J, Barlet X, Deslandes L, Hirsch J, Feng D X, Somssich I, Marco Y.Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum[J]. PLoS One, 2008, 3(7):e2589.doi: 10.1371/journal.pone.0002589.
|
[27] |
|
|
Yang C H Z,Tang X Y,Li W,Xia S T.NLR and its regulation on plant disease resistance[J].Chinese Bulletin of Botany,2020,55(4):497-504.
|
[28] |
Deng Y W, Ning Y S, Yang D L, Zhai K R, Wang G L, He Z H.Molecular basis of disease resistance and perspectives on breeding strategies for resistance improvement in crops[J]. Molecular Plant, 2020, 13(10):1402-1419.doi: 10.1016/j.molp.2020.09.018.
|
[29] |
Dodds P N, Rathjen J P.Plant immunity:Towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics, 2010, 11(8):539-548.doi: 10.1038/nrg2812.
|
[30] |
Mészáros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardóczy V, Teige M, Koncz C, Peck S, Bögre L.The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin[J]. The Plant Journal, 2006, 48(4):485-498.doi: 10.1111/j.1365-313x.2006.02888.x.
|
[31] |
Lai Y, Dang F F, Lin J, Yu L, Lin J H, Lei Y F, Chen C C, Liu Z Q, Qiu A L, Mou S L, Guan D Y, Wu Y, He S L.Overexpression of a pepper CaERF5 gene in tobacco plants enhances resistance to Ralstonia solanacearum infection[J]. Functional Plant Biology, 2014, 41(7):758-767.doi: 10.1071/FP13305.
|
[32] |
Wang Y N, Dang F F, Liu Z Q, Wang X, Eulgem T, Lai Y, Yu L, She J J, Shi Y L, Lin J H, Chen C C, Guan D Y, Qiu A L, He S L.CaWRKY58,encoding a group I WRKY transcription factor of Capsicum annuum,negatively regulates resistance to Ralstonia solanacearum infection[J]. Molecular Plant Pathology, 2013, 14(2):131-144.doi: 10.1111/j.1364-3703.2012.00836.x.
|
[33] |
Dang F F, Wang Y N, She J J, Lei Y F, Liu Z Q, Eulgem T, Lai Y, Lin J, Yu L, Lei D, Guan D Y, Li X, Yuan Q, He S L.Overexpression of CaWRKY27,a subgroup IIe WRKY transcription factor of Capsicum annuum,positively regulates tobacco resistance to Ralstonia solanacearum infection[J]. Physiologia Plantarum, 2014, 150(3):397-411.doi: 10.1111/ppl.12093.
|
[34] |
Cai H Y, Yang S, Yan Y, Xiao Z L, Cheng J B, Wu J, Qiu A L, Lai Y, Mou S L, Guan D Y, Huang R H, He S L.CaWRKY6 transcriptionally activates CaWRKY40,regulates Ralstonia solanacearum resistance,and confers high-temperature and high-humidity tolerance in pepper[J]. Journal of Experimental Botany, 2015, 66(11):3163-3174.doi: 10.1093/jxb/erv125.
|
[35] |
Chen N, Wu S H, Fu J L, Cao B H, Lei J J, Chen C M, Jiang J.Overexpression of the eggplant( Solanum melongena)NAC family transcription factor SmNAC suppresses resistance to bacterial wilt[J]. Scientific Reports, 2016, 6:31568.doi: 10.1038/srep31568.
|
[36] |
Shen L, Liu Z Q, Yang S, Yang T, Liang J Q, Wen J Y, Liu Y Y, Li J Z, Shi L P, Tang Q, Shi W, Hu J, Liu C L, Zhang Y W, Lin W, Wang R Z, Yu H X, Mou S L, Hussain A, Cheng W, Cai H Y, He L, Guan D Y, Wu Y, He S L.Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40[J]. Journal of Experimental Botany, 2016, 67(8):2439-2451.doi: 10.1093/jxb/erw069.
|
[37] |
Liu Q P, Liu Y, Tang Y M, Chen J N, Ding W.Overexpression of NtWRKY50 increases resistance to Ralstonia solanacearum and alters salicylic acid and jasmonic acid production in tobacco[J]. Frontiers in Plant Science, 2017, 8:1710.doi: 10.3389/fpls.2017.01710.
|
[38] |
Qiu Z K, Yan S S, Xia B, Jiang J, Yu B W, Lei J J, Chen C M, Chen L, Yang Y, Wang Y Q, Tian S B, Cao B H.The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase[J]. Journal of Experimental Botany, 2019, 70(19):5343-5354.doi: 10.1093/jxb/erz259.
|
[39] |
Chang Y N, Yu R M, Feng J L, Chen H Z, Eri H M, Gao G.NAC transcription factor involves in regulating bacterial wilt resistance in potato[J]. Functional Plant Biology, 2020, 47(10):925-936.doi: 10.1071/FP19331.
|
[40] |
Zhuo T, Wang X, Chen Z Y, Cui H T, Zeng Y H, Chen Y, Fan X J, Hu X, Zou H S.The Ralstonia solanacearum effector RipI induces a defence reaction by interacting with the bHLH93 transcription factor in Nicotiana benthamiana[J]. Molecular Plant Pathology, 2020, 21(7):999-1004.doi: 10.1111/mpp.12937.
|
[41] |
Qiu A L, Liu Z Q, Li J Z, Chen Y S, Guan D Y, He S L.The ectopic expression of CaRop1 modulates the response of tobacco plants to Ralstonia solanacearum and aphids[J]. Frontiers in Plant Science, 2016, 7:1177.doi: 10.3389/fpls.2016.01177.
|
[42] |
Shen L, Yang S, Yang T, Liang J Q, Cheng W, Wen J Y, Liu Y Y, Li J Z, Shi L P, Tang Q, Shi W, Hu J, Liu C L, Zhang Y W, Mou S L, Liu Z Q, Cai H Y, He L, Guan D Y, Wu Y, He S L.CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling[J]. Scientific Reports, 2016, 6:22439.doi: 10.1038/srep22439.
|
[43] |
Cheng W, Xiao Z L, Cai H Y, Wang C Q, Hu Y, Xiao Y P, Zheng Y X, Shen L, Yang S, Liu Z Q, Mou S L, Qiu A L, Guan D Y, He S L.A novel leucine-rich repeat protein,CaLRR51,acts as a positive regulator in the response of pepper to Ralstonia solanacearum infection[J]. Molecular Plant Pathology, 2017, 18(8):1089-1100.doi: 10.1111/mpp.12462.
|
[44] |
Deslandes L, Pileur F, Liaubet L, Camut S, Can C, Williams K, Holub E, Beynon J, Arlat M, Marco Y.Genetic characterization of RRS1,a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum[J]. Molecular Plant-Microbe Interactions, 1998, 11(7):659-667.doi: 10.1094/MPMI.1998.11.7.659.
|
[45] |
Zhang C, Chen H, Cai T C, Deng Y, Zhuang R R, Zhang N, Zeng Y H, Zheng Y X, Tang R H, Pan R L, Zhuang W J.Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco[J]. Plant Biotechnology Journal, 2017, 15(1):39-55.doi: 10.1111/pbi.12589.
|
[46] |
Ben C, Debell F, Berges H, Bellec A, Jardinaud M F, Anson P, Huguet T, Gentzbittel L, Vailleau F.MtQRRS1,an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum[J]. The New Phytologist, 2013, 199(3):758-772.doi: 10.1111/nph.12299.
|
[47] |
Sánchez-Vallet A, López G, Ramos B, Delgado-Cerezo M, Riviere M P, Llorente F, Fernández P V, Miedes E, Estevez J M, Grant M, Molina A.Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina[J]. Plant Physiology, 2012, 160(4):2109-2124.doi: 10.1104/pp.112.200154.
|
[48] |
Lim C W, Luan S, Lee S C.A prominent role for RCAR3-mediated ABA signaling in response to Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis[J]. Plant and Cell Physiology, 2014, 55(10):1691-1703.doi: 10.1093/pcp/pcu100.
|
[49] |
Chezem W R, Memon A, Li F S, Weng J K, Clay N K.SG2-type R2R3-MYB transcription factor MYB15 controls defense-induced lignification and basal immunity in Arabidopsis[J]. The Plant Cell, 2017, 29(8):1907-1926.doi: 10.1105/tpc.16.00954.
|
[50] |
Li Y, Chen M, Wang S L, Ning J, Ding X H, Chu Z H. AtMYB11 regulates caffeoylquinic acid and flavonol synthesis in tomato and tobacco[J]. The Plant Cell, 2015, 122(2):309-319.doi: 10.1007/s11240-015-0767-6.
|
[51] |
Takeuchi M, Kegasa T, Watanabe A, Tamura M, Tsutsumi Y.Expression analysis of transporter genes for screening candidate monolignol transporters using Arabidopsis thaliana cell suspensions during tracheary element differentiation[J]. Journal of Plant Research, 2018, 131(2):297-305.doi: 10.1007/s10265-017-0979-4.
|
[52] |
Pascual M B, Llebrés M T, Craven-Bartle B, Cañas R A, Cánovas F M, Ávila C. PpNAC1,a main regulator of phenylalanine biosynthesis and utilization in maritime pine[J]. Plant Biotechnology Journal, 2018, 16(5):1094-1104.doi: 10.1111/pbi.12854.
|