[1] 李平, 朱伟然, 严学兵, 王成章, 何云, 雒爱玲, 徐兵, 杨玲玲. 新的禾本科模式植物——二穗短柄草[J]. 草原与草坪, 2008(6):69-74. doi:10.3969/j.issn.1009-5500.2008.06.018. Li P, Zhu W R, Yan X B, Wang C Z, He Y, Luo A L, Xu B, Yang L L. Brachypodium distachyon, a new model gramineous plant[J]. Grassland and Turf, 2008(6):69-74. [2] The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon[J]. Nature, 2010, 463(7282):763-768. doi:10.1038/nature08747. [3] Beike A K, Lang D, Zimmer A D, Wüst F, Trautmann D, Wiedemann G, Beyer P, Decker E L, Reski R. Insights from the cold transcriptome of Physcomitrella patens:global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation[J]. New Phytologist, 2015, 205(2):869-881. doi:10.1111/nph.13004. [4] Shi Y T, Ding Y L, Yang S H. Molecular regulation of CBF signaling in cold acclimation[J]. Trends in Plant Science, 2018, 23(7):623-637. doi:10.1016/j.tplants.2018.04.002. [5] Bolt S, Zuther E, Zintl S, Hincha D K, Schmülling T. ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation[J]. Plant, Cell & Environment, 2017, 40(1):108-120. doi:10.1111/pce.12838. [6] Upadhyay R K, Gupta A, Soni D, Garg R, Pathre U V, Nath P, Sane A P. Ectopic expression of a tomato DREB gene affects several ABA processes and influences plant growth and root architecture in an age-dependent manner[J]. Journal of Plant Physiology, 2017, 214:97-107. doi:10.1016/j.jplph.2017.04.004. [7] Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie A R, Shinozaki K, Yamaguchi-Shinozaki K. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants[J]. Plant Biotechnology Journal, 2017, 15(4):458-471. doi:10.1111/pbi.12644. [8] Chen H L, Liu L P, Wang L X, Wang S H, Cheng X Z. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana[J]. Journal of Plant Research, 2016, 129(2):263-273. doi:10.1007/s10265-015-0773-0. [9] Li H Y, Zhang D Y, Li X S, Guan K Y, Yang H L. Novel DREB A-5 subgroup transcription factors from desert moss (Syntrichia caninervis) confers multiple abiotic stress tolerance to yeast[J]. Journal of Plant Physiology, 2016, 194:45-53. doi:10.1016/j.jplph.2016.02.015. [10] Chen Y X, Huang L K, Yan H D, Zhang X Q, Xu B, Ma X. Cloning and characterization of an ABA-independent DREB transcription factor gene, HcDREB2, in Hemarthria compressa[J]. Hereditas, 2016, 153(1):3. doi:10.1186/s41065-016-0008-y. [11] Liang Y Q, Li X S, Zhang D Y, Gao B, Yang H L, Wang Y C, Guan K Y, Wood A J. ScDREB8, a novel A-5 type of DREB gene in the desert moss Syntrichia caninervis, confers salt tolerance to Arabidopsis[J]. Plant Physiology and Biochemistry, 2017, 120:242-251. doi:10.1016/j.plaphy.2017.09.014. [12] Feng J X, Liu D, Pan Y, Gong W, Ma L G, Luo J C, Deng X W, Zhu Y X. An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family[J]. Plant Molecular Biology, 2005, 59(6):853-868. doi:10.1007/s11103-005-1511-0. [13] Sharoni A M, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi I R, Omura T, Kikuchi S. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice[J]. Plant and Cell Physiology, 2011, 52(2):344-360. doi:10.1093/pcp/pcq196. [14] Chen L H, Han J P, Deng X M, Tan S L, Li L L, Li L, Zhou J F, Peng H, Yang G X, He G X, Zhang W X. Expansion and stress responses of AP2/EREBP superfamily in Brachypodium distachyon[J]. Scientific Reports, 2016, 6(1):21623. doi:10.1038/srep21623. [15] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. The Plant Cell, 1998, 10(8):1391-1406. doi:10.1105/tpc.10.8.1391. [16] Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature[J]. The Plant Cell, 2017, 29(4):760-774. doi:10.1105/tpc.16.00669. [17] Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant and Cell Physiology, 2006, 47(1):141-153. doi:10.1093/pcp/pci230. [18] Xue G P. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature[J]. The Plant Journal, 2003, 33(2):373-383. doi:10.1046/j.1365-313X.2003.01630. x. [19] Shen Y G, Zhang W K, He S J, Zhang J S, Liu Q, Chen S Y. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress[J]. Theoretical and Applied Genetics, 2003, 106(5):923-930. doi:10.1007/s00122-002-1131-x. [20] Bayer F E, Zimmermann M, Preiss A, Nagel A C. Overexpression of the Drosophila ATR homologous checkpoint kinase Mei-41 induces a G2/M checkpoint in Drosophila imaginal tissue[J]. Hereditas, 2018, 155(1):27. doi:10.1186/s41065-018-0066-4. [21] Ryu J Y, Hong S Y, Jo S H, Woo J C, Lee S, Park C M. Molecular and functional characterization of cold-responsive C-repeat binding factors from Brachypodium distachyon[J]. BMC Plant Biology, 2014, 14(1):15. doi:10.1186/1471-2229-14-15. [22] Hao J J, Yang J L, Dong J L, Fei S Z. Characterization of BdCBF genes and genome-wide transcriptome profiling of BdCBF3-dependent and-independent cold stress responses in Brachypodium distachyon[J]. Plant Science, 2017, 262:52-61. doi:10.1016/j.plantsci.2017.06.001. [23] Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24):4876-4882. doi:10.1093/nar/25.24.4876. [24] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6:Molecular Evolutionary Genetics Analysis version 6.0[J]. Moleclular Biology Evolution, 2013, 30(12):2725-2729. doi:10.1093/molbev/mst197. [25] Heath R L, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and Biophysics, 1968, 125(1):189-198. doi:10.1016/0003-9861(68)90654-1. [26] 李飞鸿, 侯应军, 李雪涵, 余心怡, 渠慎春. 苹果赤霉素氧化酶基因 MdGA2ox8 的克隆及功能分析[J]. 中国农业科学, 2018, 51(22):4339-4351. doi:10.3864/j.issn.0578-1752.2018.22.012. Li F H, Hou Y J, Li X H, Yu X Y, Qu S C. Cloning and function analysis of apple gibberellin oxidase gene MdGA2ox8[J]. Scientia Agricultura Sinica, 2018,51(22):4339-4351. [27] Jofuku K D, den Boer B G W, Van Montagu M, Okamuro J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell, 1994, 6(9):1211-1225. doi:10.2307/3869820. [28] Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(3):1035-1040. doi:10.1073/pnas.94.3.1035. [29] Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression[J]. The Plant Cell, 2006, 18(5):1292-1309. doi:10.1105/tpc.105.035881. [30] Hong B, Tong Z, Ma N, Li J K, Kasuga M, Yamaguchi-Shinozaki K, Gao J P. Heterologous expression of the AtDREB1A gene in Chrysanthemum increases drought and salt stress tolerance[J]. Science in China Series C(Life Sciences), 2006, 49(5):436-445. doi:10.1007/s11427-006-2014-1. |