[1] 房经贵, 刘崇怀. 葡萄分子生物学[M]. 北京:科学出版社, 2014.
[2] 付涛, 吴月燕, 陶巧静, 等. 幼年鄞红葡萄对短期弱光胁迫的生理生化响应[J]. 江苏农业学报, 2014, 30(2):405-410.
[3] Dancewicz K, Paprocka M, Morkunas I A. Struggle to survive:aphid-plant relationships under low-light stress. A case of Acyrthosiphon pisum (Harris) and Pisum sativum L.[J]. Arthropod-Plant Interactions, 2018, 12(1):97-111.
[4] 孙永江, 杜远鹏, 翟衡. 高温胁迫下不同光强对"赤霞珠"葡萄PSⅡ活性及恢复的影响[J]. 植物生理学报, 2014, 50(8):1209-1215.
[5] Syvertsen J P, Smith M L. Acclimation in citrus leaves I change in physical characteristics, cholorophyll, and nitrogen content[J]. Amer Soc Hor Sci, 1984, 109(6):812-817.
[6] 何小燕, 马锦林, 张日清, 等. 弱光胁迫对植物生长影响的研究进展[J]. 经济林研究, 2011, 29(4):131-136.
[7] 易金鑫, 陈静华. 弱光胁迫对茄子植株形态及两项生理指标的影响[J]. 江苏农业科学, 1999(6):62-65.
[8] 常静, 郭磊, 巩在武. 低温弱光胁迫对辣椒叶片生理特性和光合特性的影响[J]. 江苏农业科学, 2017, 45(10):113-116.
[9] Iriti M, Faoro F. Chemical diversity and defence metabolism:howplants cope with pathogens and ozone pollution[J]. Intern J Mol Sci, 2009, 10(8):3371-3399.
[10] Gangappa S, Prasad V, Chatopadhyay S. Functional interconnection of MYC2 and SPA1 in the photomorphogenic sedling development of Arabidopsis[J]. Plant Physiology, 2010, 154(3):1210-1219.
[11] Meyer Y, Belin C, Delorme-Hinoux V, et al. Thioredox-in and glutaredoxin systems in plants:Molecular mecha-nisms,crosstalks and functional significance[J]. Antioxidants & Redox Signaling, 2012, 17(8):1124-1160.
[12] 李伟, 眭晓蕾, 王绍辉, 等. 黄瓜幼苗不同叶位叶片光合特性对弱光的响应[J]. 中国农业科学, 2008, 41(11):3698-3707.
[13] 徐晓昀,郁继华,颉建明,等. 2,4-表油菜素内酯对亚适温弱光下黄瓜幼苗光合特性和抗氧化系统的影响[J]. 核农学报, 2017,31(5):979-986.
[14] 耿新丽, 张银欢, 张翠环, 等.弱光胁迫对不同甜瓜果实大小发育的影响[J]. 北方园艺,2015(14):27-30.
[15] 刘德兴,荆鑫,焦娟,等.嫁接对番茄产量、品质及耐盐性影响的综合评价[J]. 园艺学报,2017,44(6):1094-1104.
[16] 王红飞,李锡香,董洪霞,等.黄瓜核心种质芽期低温耐受性鉴定评价[J]. 植物遗传资源学报,2016,16(1):6-12.
[17] 李学孚, 倪智敏, 吴月燕, 等. 盐胁迫对"鄞红"葡萄光合特性及叶片细胞结构的影响[J]. 生态学报, 2015, 35(13):4436-4444.
[18] Bonnie S W, Bedair M F, Ewa U W, et al. Sumner integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula[J]. Root Border Cells Plant Physiology,2015,167:1699-1716.
[19] Bai L, Deng H, Zhang X, et al. Gibberellin is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperatures[J]. PLoS One, 2016, 11(5):e0156188.
[20] 唐韡, 李天来, 张秀美, 等. 苗期弱光胁迫对番茄生长和叶绿素含量的影响及其恢复效应[J]. 沈阳农业大学学报, 2007, 38(3):278-282.
[21] 蒋晓婷, 林碧英, 林义章. 弱光胁迫对丝瓜幼苗生长及生理生化特性的影响[J]. 北方园艺, 2015(9):14-18.
[22] 丘立杭, 李强, 黄杏, 等. 弱光胁迫影响甘蔗叶片内源激素的平衡和分蘖进程[J]. 植物生理学报, 2017, 53(2):280-290.
[23] Zhang G, Ren Y, Sun H, et al. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.)[J]. BMC Genomics,2015, 16(1):1101-1113
[24] 丁梦秋,闻诗文,陆卫平,等.结实期弱光胁迫对甜玉米籽粒灌浆和叶片衰老的影响[J]. 核农学报,2017,31(5):964-971.
[25] 侯永平, 陈年来, 康恩祥, 等. 低温弱光对西葫芦幼苗渗透调节物质的影响[J]. 中国瓜菜, 2009(1):8-12.
[26] 迟伟, 王荣富, 张成林. 遮荫条件下草莓的光合特性变化[J]. 应用生态学报, 2001, 12(4):566-568.
[27] 陈磊, 郭军, 田时炳, 等. 低温弱光胁迫对不同茄子品种幼苗抗氧化特性的影响[J]. 西南农业学报, 2012, 25(6):2054-2058.
[28] Schliemann W, Ammer C, Strack D.Metabolite profiling of my-corrhizal roots of Medicago truncatula[J]. Phytochemistry,2018, 69:112-146.
[29] Sridevi V, Chellamuthu V. Impact of weather on rice-A review[J]. Inter J Appl Res, 2015, 1(9):825-831.
[30] 赵霞,杨华伟,刘然方,等.水稻热耗散对逆境的响应[J].中国水稻科学,2016,30(4):431-440.
[31] Aravind P, Prasad M N. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.:a free floating freshwater macrophyte[J]. Plant Physiology and Biochemistry, 2003, 41(4):391-397.
[32] 任华中, 黄伟, 张福墁. 低温弱光对温室番茄生理特性的影响[J]. 中国农业大学学报, 2002, 7(1):95-101.
[33] 刘永华, 吴晓花, 李国景, 等. 低温弱光对生态型瓠瓜幼苗生长和生理生化特性的影响[J]. 浙江农业学报, 2006, 18(6):421-424.
[34] 谭健晖. 马尾松优良种源苗木对人工低温胁迫的生理生化反应[J]. 林业科学, 2013, 49(3):51-55.
[35] Sun Y J, Liu X H, Zhai H, et al. Responses of photosystem Ⅱ photochemistry and the alternative oxidase pathway to heat stress in grape leaves[J]. Acta Physiologiae Plantarum, 2016, 38(10):1664-1861.
[36] 宋金亮, 朱磊, 王震, 等. 低温弱光胁迫对西葫芦幼苗生长指标的影响[J]. 北方园艺, 2017(1):13-17.
[37] Pires N, Dolan L. Origin and diversification of basic-helix-loop-helix proteins in plants[J]. Molecular Biology and Evolution, 2010, 27(4):862-874.
[38] Sasaki-Sekimoto Y, Taki N, Obayashi T, et al. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis[J]. Plant Journal, 2005, 44(4):653-668.
[39] Yadav V, Malappa C, Gangappa S N, et al. A basic helix-loop-helix transcription factor in Arabidopsis, MYC 2 acts as a represor of blue light-mediated pho-tomorphogenic growth[J]. Plant Cel, 2005, 17(7):1953-1966.
[40] Laloi C, Mestres Ortega D, Marco Y, et al. The Arabidopsis cytosolic thioredoxin h5 Gene induction by oxidative stress and its w-box-mediated response to pathogen elicitor[J]. Plant Physiology, 2004, 134(3):1006-1016.
[41] Broin M, Rey P. Potato plants lacking the CDSP 32 plastidic thioredoxin exhibit overoxidation of the BAS12-cysteine peroxiredoxin and increased lipid Peroxidation in thylakoids under photooxidative stress[J]. Plant Physiology, 2003, 132(3):1335-1343.
[42] 夏德习, 管清杰, 金淑梅, 等. 拟南芥硫氧还蛋白M1型基因(AtTRX m1)与环境逆境之间的关系[J]. 分子植物育种, 2007, 5(1):21-26.
[43] Thormählen I, Naranjo B, Trujillo-Hernandez J A, et al.On the elaborate Network of Thioredoxins in higher plants[J]. Progress in Botany,2018,16:1-29. |