[1] Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman S D. Chloroplast function and ion regulation in plants growing on saline soils:Lessons from halophytes[J]. Journal of Experimental Botany, 2017, 68(12):3129-3143.doi:10.1093/jxb/erx142. [2] Sabater B. Evolution and function of the chloroplast. Current investigations and perspectives[J]. International Journal of Molecular Sciences, 2018, 19(10):3095.doi:10.3390/ijms19103095. [3] Chan K X, Phua S Y, Crisp P, McQuinn R, Pogson B J. Learning the languages of the chloroplast:Retrograde signaling and beyond[J]. Annual Review of Plant Biology, 2016, 67:25-53.doi:10.1146/annurev-arplant-043015-111854. [4] Jarvis P, Kessler F. Mechanisms of chloroplast protein import in plants[M].//Plastid Biology.New York:Springer, 2014.doi:10.1007/978-1-4939-1136-3_9. [5] Richardson L G L, Small E L, Inoue H, Schnell D J. Molecular topology of the transit peptide during chloroplast protein import[J]. The Plant Cell, 2018, 30(8):1789-1806.doi:10.1105/tpc.18.00172. [6] Wang L X, Liang W, Xing J H, Tan F L, Chen Y Y, Huang L, Cheng C L, Chen W. Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce[J]. Journal of Proteome Research, 2013, 12(11):5124-5136.doi:10.1021/pr4006469. [7] Tamburino R, Vitale M, Ruggiero A, Sassi M, Sannino L, Arena S, Costa A, Batelli G, Zambrano N, Scaloni A, Grillo S, Scotti N. Chloroplast proteome response to drought stress and recovery in tomato(Solanum lycopersicum L.)[J]. BMC Plant Biology, 2017, 17(1):40.doi:10.1186/s12870-017-0971-0. [8] Ling Q H, Huang W H, Baldwin A, Jarvis P. Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system[J]. Science, 2012, 338(6107):655-659.doi:10.1126/science.1225053. [9] Ling Q H, Jarvis P. Regulation of chloroplast protein import by the ubiquitin E3 ligase SP1 is important for stress tolerance in plants[J]. Current Biology, 2015, 25(19):2527-2534.doi:10.1016/j.cub.2015.08.015. [10] Ling Q H, Jarvis P. Plant signaling:Ubiquitin pulls the trigger on chloroplast degradation[J]. Current Biology, 2016, 26(1):R38-R40.doi:10.1016/j.cub.2015.11.022. [11] Ling Q H, Broad W, Trösch R, Töpel M, Sert T D, Lymperopoulos P, Baldwin A, Jarvis R P. Ubiquitin-dependent chloroplast-associated protein degradation in plants[J]. Science, 2019, 363(6429):eaav4467.doi:10.1126/science.aav4467. [12] Pan R H, Hu J P. Sequence and biochemical analysis of Arabidopsis SP1 protein, a regulator of organelle biogenesis[J]. Communicative & Integrative Biology, 2017, 10(4):e1338991.doi:10.1080/19420889.2017.1338991. [13] Sadali N M, Sowden R G, Ling Q H, Jarvis R P. Differentiation of chromoplasts and other plastids in plants[J]. Plant Cell Reports, 2019, 38(7):803-818.doi:10.1007/s00299-019-02420-2. [14] 腾海艳. 水稻Ossp1 基因的亚细胞定位及其干旱条件下的表达[J].江苏农业学报, 2020, 36(3):529-534.doi:10.3969/j.issn.1000-4440.2020.03.001. Teng H Y. Subcellular localization and expression under drought conditions of rice Ossp1 gene[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(3):529-534. [15] Jinek M, East A, Cheng A, Lin S, Ma E B, Doudna J. RNA-programmed genome editing in human cells[J]. eLife, 2013, 2:e00471.doi:10.7554/eLife.00471. [16] Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F. Genome engineering using the CRISPR-Cas9 system[J]. Nature Protocols, 2013, 8(11):2281-2308.doi:10.1038/nprot.2013.143. [17] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8):1274-1284.doi:10.1016/j.molp.2015.04.007. [18] Li J F, Zhang D D, Sheen J. Cas9-based genome editing in Arabidopsis and tobacco[J]. Methods in Enzymology, 2014, 546:459-472.doi:10.1016/B978-0-12-801185-0.00022-2. [19] Char S N, Li R Q, Yang B. CRISPR/Cas9 for mutagenesis in rice[J]. Methods in Molecular Biology, 2019, 1864:279-293.doi:10.1007/978-1-4939-8778-8_19. [20] Wang Y, Geng L Z, Yuan M L, Wei J, Jin C, Li M, Yu K, Zhang Y, Jin H B, Wang E, Chai Z J, Fu X D, Li X G. Deletion of a target gene in Indica rice via CRISPR/Cas9[J]. Plant Cell Reports, 2017, 36(8):1333-1343.doi:10.1007/s00299-017-2158-4. [21] Zhang J S, Zhang H, Botella J R, Zhu J K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the waxy gene in elite rice varieties[J]. Journal of Integrative Plant Biology, 2018, 60(5):369-375.doi:10.1111/jipb.12620. [22] Ozawa K. Establishment of a high efficiency Agrobacterium -mediated transformation system of rice(Oryza sativa L.)[J]. Plant Science, 2009, 176(4):522-527.doi:10.1016/j.plantsci.2009.01.013. [23] 陈文岳, 包劲松, 周祥胜, 舒庆尧. 一种可用于PCR分析的水稻DNA简易提取法[J].中国水稻科学, 2005, 19(6):561-563.doi:10.16819/j.1001-7216.2005.06.015. Chen W Y, Bao J S, Zhou X S, Shu Q Y. A simplified rice DNA extraction protocol for PCR analysis[J]. Chinese Journal of Rice Science, 2005, 19(6):561-563. [24] 腾海艳. 水稻叶绿体中干旱诱导型光呼吸代谢支路的创建[D].广州:华南农业大学, 2017. Teng H Y. Construction of a drought inducible photorespiratory by pass in chloroplasts of rice[D].Guangzhou:South China Agricultural University, 2017. [25] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6):1101-1108.doi:10.1038/nprot.2008.73. [26] Arocho A, Chen B Y, Ladanyi M, Pan Q L.Validation of the 2-ΔΔCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts[J]. Diagnostic Molecular Pathology, 2006, 15(1):56-61.doi:10.1097/00019606-200603000-00009. [27] 李合生. 植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000:167-169. Li H S. Principles and techniques of plant physiological biochemical experiment[M].Beijing:Higher Education Press, 2000:167-169. [28] Thordal-Christensen H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction[J]. The Plant Journal, 1997, 11(6):1187-1194.doi:10.1046/j.1365-313x.1997.11061187.x. [29] Yang X L, Li Y Y, Qi M F, Liu Y F, Li T L. Targeted control of chloroplast quality to improve plant acclimation:From protein import to degradation[J]. Frontiers in Plant Science, 2019, 10:958.doi:10.3389/fpls.2019.00958. [30] Han M, Kim C Y, Lee J, Lee S K, Jeon J S. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice[J]. Molecules and Cells, 2014, 37(7):532-539.doi:10.14348/molcells.2014.0128. [31] He Y, Li L J, Zhang Z H, Wu J L. Identification and comparative analysis of premature senescence leaf mutants in rice(Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2018, 19(1):140.doi:10.3390/ijms19010140. [32] Woo H R, Kim H J, Lim P O, Nam H G. Leaf senescence:Systems and dynamics aspects[J]. Annual Review of Plant Biology, 2019, 70:347-376.doi:10.1146/annurev-arplant-050718-095859. [33] Pan R H, Satkovich J, Chen C, Hu J P. The E3 ubiquitin ligase SPl-like 1 plays a positive role in peroxisome biogenesis in Arabidopsis[J]. The Plant Journal, 2018, 94(5):836-846.doi:10.1111/tpj.13900. |