| [1] |
Shiferaw B, Smale M, Braun H J, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10.Past successes and future challenges to the role played by wheat in global food security[J]. ([a-z]), 2013, 5(3):291-317.doi: 10.1007/s12571-013-0263-y.
|
| [2] |
Lafiandra D, Riccardi G, Shewry P R. Improving cereal grain carbohydrates for diet and health[J]. Journal of Cereal Science, 2014, 59(3):312-326.doi: 10.1016/j.jcs.2014.01.001.
|
| [3] |
Xiao J, Liu B, Yao Y Y, Guo Z F, Jia H Y, Kong L R, Zhang A M, Ma W J, Ni Z F, Xu S B, Lu F, Jiao Y N, Yang W Y, Lin X L, Sun S L, Lu Z F, Gao L F, Zhao G Y, Cao S H, Chen Q, Zhang K P, Wang M C, Wang M, Hu Z R, Guo W L, Li G Q, Ma X, Li J M, Han F P, Fu X D, Ma Z Q, Wang D W, Zhang X Y, Ling H Q, Xia G M, Tong Y P, Liu Z Y, He Z H, Jia J Z, Chong K. Wheat genomic study for genetic improvement of traits in China[J]. Science China Life Sciences, 2022, 65(9):1718-1775.doi: 10.1007/s11427-022-2178-7.
|
| [4] |
Zhang X F, Zheng Y F, Wang C Y, Chen H L, Ren Z H, Zou C H. Spatial distribution and temporal variation of the winter wheat late frost disaster in Henan,China[J]. Acta Meteorologica Sinica, 2011, 25(2):249-259.doi: 10.1007/s13351-011-0031-x.
|
| [5] |
Sun S, Yang X G, Lin X M, Sassenrath G F, Li K N. Winter wheat yield gaps and patterns in China[J]. Agronomy Journal, 2018, 110(1):319-330.doi: 10.2134/agronj2017.07.0417.
|
| [6] |
Gulick P J, Drouin S, Yu Z H, Danyluk J, Poisson G, Monroy A F, Sarhan F. Transcriptome comparison of winter and spring wheat responding to low temperature[J]. Genome, 2005, 48(5):913-923.doi: 10.1139/g05-039.
|
| [7] |
Tian Y, Peng K K, Lou G C, Ren Z P, Sun X Z, Wang Z W, Xing J P, Song C H, Cang J. Transcriptome analysis of the winter wheat Dn1 in response to cold stress[J]. BMC Plant Biology, 2022, 22(1):277.doi: 10.1186/s12870-022-03654-1.
|
| [8] |
Yu M M, Wang R, Xia J Q, Li C, Xu Q H, Cang J, Wang Y Y, Zhang D. JA-induced TaMPK6 enhanced the freeze tolerance of Arabidopsis thaliana through regulation of ICE-CBF-COR module and antioxidant enzyme system[J]. Plant Science, 2023, 329:111621.doi: 10.1016/j.plantsci.2023.111621.
|
| [9] |
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer C H. Glutathione in plants:an integrated overview[J]. Plant,Cell & Environment, 2012, 35(2):454-484.doi: 10.1111/j.1365-3040.2011.02400.x.
|
| [10] |
Ito T, Kitaiwa T, Nishizono K, Umahashi M, Miyaji S, Agake S I, Kuwahara K, Yokoyama T, Fushinobu S, Maruyama-Nakashita A, Sugiyama R, Sato M, Inaba J, Hirai M Y, Ohkama-Ohtsu N. Glutathione degradation activity of γ-glutamyl peptidase 1 manifests its dual roles in primary and secondary sulfur metabolism in Arabidopsis[J]. The Plant Journal, 2022, 111(6):1626-1642.doi: 10.1111/tpj.15912.
|
| [11] |
Kumar S, Kaur A, Chattopadhyay B, Bachhawat A K. Defining the cytosolic pathway of glutathione degradation in Arabidopsis thaliana:role of the ChaC/GCG family of γ-glutamyl cyclotransferases as glutathione-degrading enzymes and AtLAP1 as the Cys-Gly peptidase[J]. Biochemical Journal, 2015, 468(1):73-85.doi: 10.1042/bj20141154.
|
| [12] |
Joshi N C, Meyer A J, Bangash S A K, Zheng Z L, Leustek T. Arabidopsis γ-glutamylcyclotransferase affects glutathione content and root system architecture during sulfur starvation[J]. New Phytologist, 2019, 221(3):1387-1397.doi: 10.1111/nph.15466.
|
| [13] |
Ghosh A, Islam M S, Alam N B, Mustafiz A, Islam T. Transcript profiling of glutathione metabolizing genes reveals abiotic stress and glutathione-specific alteration in Arabidopsis and rice[J]. Physiology and Molecular Biology of Plants, 2022, 28(7):1375-1390.doi: 10.1007/s12298-022-01220-5.
|
| [14] |
Zhang L, Sun W T, Gao W D, Zhang Y Y, Zhang P P, Liu Y, Chen T, Yang D L. Genome-wide identification and analysis of the GGCT gene family in wheat[J]. BMC Genomics, 2024, 25(1):32.doi: 10.1186/s12864-023-09934-w.
|
| [15] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.doi: 10.1186/s13059-014-0550-8.
|
| [16] |
Yu G C, Wang L G, Han Y Y, He Q Y. ClusterProfiler:an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5):284-287.doi: 10.1089/omi.2011.0118.
|
| [17] |
Fan X D, Dong Y F, Zhang Z P, Ren F, Hu G J. First report of Vitis cryptic virus from grapevines in China[J]. Plant Disease, 2022, 106(11):3006.doi: 10.1094/pdis-02-22-0255-pdn.
|
| [18] |
Zhang N, Wang S S, Zhao S M, Chen D Y, Tian H Y, Li J, Zhang L R, Li S G, Liu L, Shi C N, Yu X D, Ren Y, Chen F. Global crotonylatome and GWAS revealed a TaSRT1- TaPGK model regulating wheat cold tolerance through mediating pyruvate[J]. Science Advances, 2023, 9(19):eadg1012.doi: 10.1126/sciadv.adg1012.
|
| [19] |
Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6):1101-1108.doi: 10.1038/nprot.2008.73.
|
| [20] |
Yu G T, Hatta A, Periyannan S, Lagudah E, Wulff B B H. Isolation of wheat genomic DNA for gene mapping and cloning[J]. Methods in Molecular Biology, 2017, 1659:207-213.doi: 10.1007/978-1-4939-7249-4_18.
|
| [21] |
Sun Y, Xie Z Z, Jin L, Qin T, Zhan C H, Huang J L. Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability[J]. The Plant Cell, 2024, 36(5):1913-1936.doi: 10.1093/plcell/koae010.
|
| [22] |
Gillikin J W, Graham J S. Purification and developmental analysis of the major anionic peroxidase from the seed coat of Glycine max[J]. Plant Physiology, 1991, 96(1):214-220.doi: 10.1104/pp.96.1.214.
|
| [23] |
Hassan M A, Chen X, Farooq M, Muhammad N, Zhang Y, Xu H, Ke Y Y, Bruno A K, Zhang L L, Li J C. Cold stress in wheat:plant acclimation responses and management strategies[J]. Frontiers in Plant Science, 2021, 12:676884.doi: 10.3389/fpls.2021.676884.
|
| [24] |
Zhao Y, Li J H, Zhao R L, Xu K, Xiao Y R, Zhang S H, Tian J C, Yang X J. Genome-wide association study reveals the genetic basis of cold tolerance in wheat[J]. Molecular Breeding, 2020, 40(4):36.doi: 10.1007/s11032-020-01115-x.
|
| [25] |
Pan Y L, Li Y F, Liu Z Y, Zou J T, Li Q. Computational genomics insights into cold acclimation in wheat[J]. Frontiers in Genetics, 2022, 13:1015673.doi: 10.3389/fgene.2022.1015673.
|
| [26] |
Zhang Y, Cai H M, Liu L Z, Xu H, Chen X, Li J C. Screening of varieties resistant to late-spring coldness in wheat and effects of late-spring coldness on the ultrastructure of wheat cells[J]. Agronomy, 2023, 13(12):3011.doi: 10.3390/agronomy13123011.
|
| [27] |
Li L, Han C L, Yang J W, Tian Z Q, Jiang R Y, Yang F, Jiao K M, Qi M L, Liu L L, Zhang B Z, Niu J S, Jiang Y M, Li Y C, Yin J. Comprehensive transcriptome analysis of responses during cold stress in wheat( Triticum aestivum L.)[J]. Genes, 2023, 14(4):844.doi: 10.3390/genes14040844.
|
| [28] |
Ahad A, Gul A, Batool T S, Huda N U, Naseeer F, Abdul Salam U, Abdul Salam M, Ilyas M, Turkyilmaz Unal B, Ozturk M. Molecular and genetic perspectives of cold tolerance in wheat[J]. Molecular Biology Reports, 2023, 50(8):6997-7015.doi: 10.1007/s11033-023-08584-1.
|
| [29] |
Xiao R X, Zou Y R, Guo X R, Li H, Lu H. Fatty acid desaturases(FADs)modulate multiple lipid metabolism pathways to improve plant resistance[J]. Molecular Biology Reports, 2022, 49(10):9997-10011.doi: 10.1007/s11033-022-07568-x.
|
| [30] |
Marone D, Mastrangelo A M, Borrelli G M, Mores A, Laidò G, Russo M A, Ficco D B M. Specialized metabolites:physiological and biochemical role in stress resistance,strategies to improve their accumulation,and new applications in crop breeding and management[J]. Plant Physiology and Biochemistry, 2022, 172:48-55.doi: 10.1016/j.plaphy.2021.12.037.
|
| [31] |
|
|
Hu W, Yan Y, Ma Z B. Cloning and expression analysis of TaMAPK2 gene in wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(10):1962-1966.
|
| [32] |
Liu Y, Yu T F, Li Y T, Zheng L, Lu Z W, Zhou Y B, Chen J, Chen M, Zhang J P, Sun G Z, Cao X Y, Liu Y W, Ma Y Z, Xu Z S. Mitogen-activated protein kinase TaMPK3 suppresses ABA response by destabilising TaPYL4 receptor in wheat[J]. New Phytologist, 2022, 236(1):114-131.doi: 10.1111/nph.18326.
|
| [33] |
|
|
Sun G X, Zhang X, Zhang C G, Yang X L. Application of glutathione in animal and plant fields[J]. Journal of Anhui Agricultural Sciences,2018, 46(8):42-45.
|
| [34] |
Fujiwara S, Kawazoe T, Ohnishi K, Kitagawa T, Popa C, Valls M, Genin S, Nakamura K, Kuramitsu Y, Tanaka N, Tabuchi M. RipAY,a plant pathogen effector protein,exhibits robust γ-glutamyl cyclotransferase activity when stimulated by eukaryotic thioredoxins[J]. The Journal of Biological Chemistry, 2016, 291(13):6813-6830.doi: 10.1074/jbc.M115.678953.
|
| [35] |
Alvarez M E, Pennell R I, Meijer P J, Ishikawa A, Dixon R A, Lamb C. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity[J]. Cell, 1998, 92(6):773-784.doi: 10.1016/S0092-8674(00)81405-1.
|
| [36] |
Ball L, Accotto G P, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux P M. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis[J]. The Plant Cell, 2004, 16(9):2448-2462.doi: 10.1105/tpc.104.022608.
|
| [37] |
Kopriva S, Rennenberg H. Control of sulphate assimilation and glutathione synthesis:interaction with N and C metabolism[J]. Journal of Experimental Botany, 2004, 55(404):1831-1842.doi: 10.1093/jxb/erh203.
|
| [38] |
Dixon D P, Davis B G, Edwards R. Functional divergence in the glutathione transferase superfamily in plants[J]. Journal of Biological Chemistry, 2002, 277(34):30859-30869.doi: 10.1074/jbc.M202919200.
|
| [39] |
Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C. Organisation and structural evolution of the rice glutathione S-transferase gene family[J]. Molecular Genetics and Genomics, 2004, 271(5):511-521.doi: 10.1007/s00438-004-1006-8.
|
| [40] |
Jiang B H, Su C, Wang Y N, Xu X, Li Y, Ma D F. Genome-wide identification of Glutathione peroxidase(GPX)family genes and silencing TaGPX3.2A reduced disease resistance in wheat[J]. Plant Physiology and Biochemistry, 2023, 204:108139.doi: 10.1016/j.plaphy.2023.108139.
|
| [41] |
Paulose B, Chhikara S, Coomey J, Jung H I, Vatamaniuk O, Dhankher O P. Ar-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis[J]. The Plant Cell, 2013, 25(11):4580-4595.doi: 10.1105/tpc.113.111815.
|
| [42] |
Park S I, Kim Y S, Kim J J, Mok J E, Kim Y H, Park H M, Kim I S, Yoon H S. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions[J]. Journal of Plant Physiology, 2017, 215:39-47.doi: 10.1016/j.jplph.2017.05.006.
|
| [43] |
Trivedi D K, Gill S S, Yadav S, Tuteja N. Genome-wide analysis of glutathione reductase(GR)genes from rice and Arabidopsis[J]. Plant Signaling & Behavior, 2013, 8(2):e23021.doi: 10.4161/psb.23021.
|
| [44] |
李永生, 方永丰, 李玥, 张同祯, 慕平, 王芳, 彭云玲, 王威, 张金文, 王汉宁. 玉米逆境响应基因 ZmGST23克隆和表达分析[J]. 农业生物技术学报, 2016, 24(5):667-677.doi: 10.3969/j.issn.1674-7968.2016.05.005.
|
|
Li Y S, Fang Y F, Li Y, Zhang T Z, Mu P, Wang F, Peng Y L, Wang W, Zhang J W, Wang H N. Cloning and expression analysis of a stress-responsive gene ZmGST23 from maize(Zea mays)[J]. Journal of Agricultural Biotechnology, 2016, 24(5):667-677.
|
| [45] |
Wang X, Fang G, Yang J, Li Y S. A thioredoxin-dependent glutathione peroxidase(OsGPX5)is required for rice normal development and salt stress tolerance[J]. Plant Molecular Biology Reporter, 2017, 35(3):333-342.doi: 10.1007/s11105-017-1026-2.
|
| [46] |
Tyagi S, Himani, Sembi J K, Upadhyay S K. Gene architecture and expression analyses provide insights into the role of glutathione peroxidases(GPXs)in bread wheat( Triticum aestivum L.)[J]. Journal of Plant Physiology, 2018, 223:19-31.doi: 10.1016/j.jplph.2018.02.006.
|
| [47] |
Galindo-González L, Mhiri C, Deyholos M K, Grandbastien M A. LTR-retrotransposons in plants:engines of evolution[J]. Gene, 2017, 626:14-25.doi: 10.1016/j.gene.2017.04.051.
|