[1] |
Li Q R, Li B, Wang J Y, Chang X P, Mao X G, Jing R L. TaPUB15,a U-Box E3 ubiquitin ligase gene from wheat,enhances salt tolerance in rice[J]. Food and Energy Security, 2021, 10(1):e250.doi: 10.1002/fes3.250.
|
[2] |
Khalid A, Hameed A, Tahir M F. Wheat quality:a review on chemical composition,nutritional attributes,grain anatomy,types,classification,and function of seed storage proteins in bread making quality[J]. Frontiers in Nutrition, 2023,10:1053196.doi: 10.3389/fnut.2023.1053196.
|
[3] |
Kumar R, Mukherjee S, Ayele B T. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat:a comprehensive review[J]. Biotechnology Advances, 2018, 36(4):954-967.doi: 10.1016/j.biotechadv.2018.02.015.
|
[4] |
Pradhan G P, Vara Prasad P V, Fritz A K, Kirkham M B, Gill B S. Response of Aegilops species to drought stress during reproductive stages of development[J]. Functional Plant Biology, 2012, 39(1):51-59.doi: 10.1071/fp11171.
|
[5] |
Han J C, Zhang Z, Cao J, Luo Y C, Zhang L L, Li Z Y, Zhang J. Prediction of winter wheat yield based on multi-source data and machine learning in China[J]. Remote Sensing, 2020, 12(2):236.doi: 10.3390/rs12020236.
|
[6] |
Pandey A, Khobra R, Mamrutha H M, Wadhwa Z, Krishnappa G, Singh G, Singh G P. Elucidating the drought responsiveness in wheat genotypes[J]. Sustainability, 2022, 14(7):3957.doi: 10.3390/su14073957.
|
[7] |
|
|
Li J Y, Yao D X, Guo X L, Wang Z M, Zhang Y H. Effects of post-anthesis drought on photosynthesis,antioxidant properties,and C4 photosynthetic enzyme activity in winter wheat[J]. Chinese Journal of Ecology, 2023, 42(1):49-57.
|
[8] |
Vierstra R D. The ubiquitin/26S proteasome pathway,the complex last chapter in the life of many plant proteins[J]. Trends in Plant Science, 2003, 8(3): 135-142.doi:10.1016/S1360-1385(03)00014-1.
|
[9] |
Ye Y H, Rape M. Building ubiquitin chains:E2 enzymes at work[J]. Nature Reviews Molecular Cell Biology, 2009, 10(11):755-764.doi: 10.1038/nrm2780.
|
[10] |
|
[11] |
Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments[J]. Plant,Cell & Environment, 2019, 42(10):2931-2944.doi: 10.1111/pce.13633.
|
[12] |
Deng M T, Zhu F, Yang Y Z, Yang F X, Hao J P, Chen S R, Hou Z C. Genome-wide association study reveals novel loci associated with body size and carcass yields in Pekin ducks[J]. BMC Genomics, 2019, 20(1):1.doi: 10.1186/s12864-018-5379-1.
|
[13] |
Yang L, Miao M J, Lyu H J, Cao X, Li J, Li Y J, Li Z, Chang W. Genome-wide identification,evolution,and expression analysis of RING finger gene family in Solanum lycopersicum[J]. International Journal of Molecular Sciences, 2019, 20(19):4864.doi: 10.3390/ijms20194864.
|
[14] |
Wang M, Jin Y, Fu J J, Zhu Y, Zheng J, Hu J, Wang G Y, et al. Genome-wide analysis of SINA family in plants and their phylogenetic relationships[J]. DNA Sequence, 2008, 19(3):206-216.doi: 10.1080/10425170701517317.
|
[15] |
Den Herder G, De Keyser A, De Rycke R, Rombauts S, Van de Velde W, Clemente M R, Verplancke C, Mergaert P, Kondorosi E, Holsters M, Goormachtig S. Seven in absentia proteins affect plant growth and nodulation in Medicago truncatula[J]. Plant Physiology, 2008, 148(1):369-382.doi: 10.1104/pp.108.119453.
|
[16] |
Wang W J, Fan Y H, Niu X L, Miao M, Kud J, Zhou B J, Zeng L R, Liu Y S, Xiao F M. Functional analysis of the seven in absentia ubiquitin ligase family in tomato[J]. Plant,Cell & Environment, 2018, 41(3):689-703.doi: 10.1111/pce.13140.
|
[17] |
Zhang C Y, Hao Z Y, Ning Y S, Wang G L. SINA E3 ubiquitin ligases:versatile moderators of plant growth and stress response[J]. Molecular Plant, 2019, 12(5):610-612.doi: 10.1016/j.molp.2019.03.013.
|
[18] |
Yang M R, Li C X, Cai Z Y, Hu Y M, Nolan T, Yu F F, Yin Y H, Xie Q, Tang G L, Wang X L. SINAT E3 ligases control the light-mediated stability of the brassinosteroid-activated transcription factor BES1 in Arabidopsis[J]. Developmental Cell, 2017, 41(1):47-58.e4.doi: 10.1016/j.devcel.2017.03.014.
|
[19] |
Xia F N, Zeng B Q, Liu H S, Qi H, Xie L J, Yu L J, Chen Q F, Li J F, Chen Y Q, Jiang L W, Xiao S. SINAT E3 ubiquitin ligases mediate FREE1 and VPS23A degradation to modulate abscisic acid signaling[J]. The Plant Cell, 2020, 32(10):3290-3310.doi: 10.1105/tpc.20.00267.
|
[20] |
Papdi C, Pérez-Salamó I, Joseph M P, Giuntoli B, Bögre L, Koncz C, Szabados L. The low oxygen,oxidative and osmotic stress responses synergistically act through the ethylene response factor Ⅶ genes RAP2.12, RAP2.2 and RAP2.3[J]. The Plant Journal, 2015, 82(5):772-784.doi: 10.1111/tpj.12848.
|
[21] |
Ning Y S, Jantasuriyarat C, Zhao Q Z, Zhang H W, Chen S B, Liu J L, Liu L J, Tang S Y, Park C H, Wang X J, Liu X L, Dai L Y, Xie Q, Wang G L. The SINA E3 ligase OsDIS1 negatively regulates drought response in rice[J]. Plant Physiology, 2011, 157(1):242-255.doi: 10.1104/pp.111.180893.
|
[22] |
Liu Y, Li L Q, Zhang L, Lyu Q, Zhao Y, Li X J. Isolation and identification of wheat gene TaDIS1 encoding a RING finger domain protein,which negatively regulates drought stress tolerance in transgenic Arabidopsis[J]. Plant Science, 2018,275:49-59.doi: 10.1016/j.plantsci.2018.07.017.
|
[23] |
Chen T, Miao Y P, Jing F L, Gao W D, Zhang Y Y, Zhang L, Zhang P P, Guo L J, Yang D L. Genomic-wide analysis reveals seven in absentia genes regulating grain development in wheat( Triticum aestivum L.)[J]. The Plant Genome, 2024, 17(3):e20480.doi: 10.1002/tpg2.20480.
|
[24] |
Fang Y, Liang L Y, Liu S, Xu B C, Siddique K H, Palta J A, Chen Y L. Wheat cultivars with small root length density in the topsoil increased post-anthesis water use and grain yield in the semi-arid region on the Loess Plateau[J]. European Journal of Agronomy, 2021,124:126243.doi: 10.1016/j.eja.2021.126243.
|
[25] |
|
|
Gao W D, Hu C Z, Zhang L, Zhang Y Y, Zhang P P, Yang D L, Chen T. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat[J]. Acta Agronomica Sinica, 2024, 50(8):1971-1988.
|
[26] |
|
|
Li J J, Ren Y Z, Bai L, Lyu W Z, Wang Z Q, Xin Z Y, Lin T B. Comprehensive identification and evaluation of drought tolerance of different genotypic wheat varieties at germination stage by PEG-6000 simulated drought stress[J]. Journal of Henan Agricultural University, 2020, 54(3):368-377.
|
[27] |
|
|
Sun L H, Li X R, Chai Y F, Wang Q Y, Zhang J C. Characteristics of yield structure and high-yield cultivation techniques of Jinmai 47[J]. Tillage and Cultivation, 2003, 23(5):48-49.
|
[28] |
Fan X D, Dong Y F, Zhang Z P, Ren F, Hu G J. First report of Vitis cryptic virus from grapevines in China[J]. Plant Disease, 2022, 106(11):3006.doi: 10.1094/pdis-02-22-0255-pdn.
|
[29] |
Ma S W, Wang M, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. WheatOmics:a platform combining multiple omics data to accelerate functional genomics studies in wheat[J]. Molecular Plant, 2021, 14(12):1965-1968.doi: 10.1016/j.molp.2021.10.006.
|
[30] |
Kobayashi F, Takumi S, Handa H. Identification of quantitative trait loci for ABA responsiveness at the seedling stage associated with ABA-regulated gene expression in common wheat[J]. Theoretical and Applied Genetics, 2010, 121(4):629-641.doi: 10.1007/s00122-010-1335-4.
|
[31] |
Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C T method[J]. Nature Protocols, 2008, 3(6):1101-1108.doi: 10.1038/nprot.2008.73.
|
[32] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
|
[33] |
Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0:an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8):1296-1297.doi: 10.1093/bioinformatics/btu817.
|
[34] |
Dong X M, Pan L B, Tang Z H. Genome-wide identification and expression analysis of BES1 family in Catharanthus roseus[J]. Journal of Plant Growth Regulation, 2023, 42(6):3851-3867.doi: 10.1007/s00344-022-10849-1.
|
[35] |
Zhang P P, Zhang L H, Chen T, Jing F L, Liu Y, Ma J F, Tian T, Yang D L. Genome-wide identification and expression analysis of the GSK gene family in wheat( Triticum aestivum L.)[J]. Molecular Biology Reports, 2022, 49(4):2899-2913.doi: 10.1007/s11033-021-07105-2.
|
[36] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1):325-327.doi: 10.1093/nar/30.1.325.
|
[37] |
Sharma H, Batra R, Kumar S, Kumar M, Kumar S, Balyan H S, Gupta P K. Identification and characterization of 20S proteasome genes and their relevance to heat/drought tolerance in bread wheat[J]. Gene Reports, 2022,27:101552.doi: 10.1016/j.genrep.2022.101552.
|
[38] |
张露, 梁青铎, 吴龙龙, 黄晶, 田仓, 张均华, 曹小闯, 朱春权, 孔亚丽, 金千瑜, 朱练峰. 减氮和增氧灌溉对水稻产量和氮素利用的影响[J]. 中国水稻科学, 2023, 37(1):78-88.doi: 10.16819/j.1001-7216.2023.220307.
|
|
Zhang L, Liang Q D, Wu L L, Huang J, Tian C, Zhang J H, Cao X C, Zhu C Q, Kong Y L, Jin Q Y, Zhu L F. Effects of nitrogen-reducing and oxygen-increasing irrigation on rice yield and nitrogen use efficiency[J]. Chinese Journal of Rice Science, 2023, 37(1):78-88.
|
[39] |
Wang W, Man Z, Li X L, Chen R Q, You Z K, Pan T T, Dai X R, Xiao H, Liu F. Response mechanism and rapid detection of phenotypic information in rice root under heavy metal stress[J]. Journal of Hazardous Materials, 2023,449:131010.doi: 10.1016/j.jhazmat.2023.131010.
|
[40] |
Sun Y, Xie Z Z, Jin L, Qin T, Zhan C H, Huang J L. Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability[J]. The Plant Cell, 2024, 36(5):1913-1936.doi: 10.1093/plcell/koae010.
|
[41] |
Ma J H, Wang Y D, Tang X X, Zhao D Y, Zhang D J, Li C X, Li W, Li T, Jiang L N. TaSINA2B,interacting with TaSINA1D,positively regulates drought tolerance and root growth in wheat( Triticum aestivum L.)[J]. Plant,Cell & Environment, 2023, 46(12):3760-3774.doi: 10.1111/pce.14708.
|
[42] |
Joo H, Lim C W, Lee S C. Roles of pepper bZIP transcription factor CaATBZ1 and its interacting partner RING-type E3 ligase CaASRF1 in modulation of ABA signalling and drought tolerance[J]. The Plant Journal, 2019, 100(2):399-410.doi: 10.1111/tpj.14451.
|
[43] |
Shu K, Yang W Y. E3 ubiquitin ligases:ubiquitous actors in plant development and abiotic stress responses[J]. Plant and Cell Physiology, 2017, 58(9):1461-1476.doi: 10.1093/pcp/pcx071.
|
[44] |
Ghimire S, Hasan M M, Fang X W. Small ubiquitin-like modifiers E3 ligases in plant stress[J]. Functional Plant Biology, 2024, 51(5):FP24032.doi: 10.1071/fp24032.
|
[45] |
李姗姗, 黄梦婷, 青雨虹, 许静, 黄君梅, 凌辉, 阙友雄, 黄宁. 甘蔗E3泛素连接酶基因 PRT1的生物信息学及表达模式分析[J]. 华北农学报, 2023, 38(1): 168-177. doi: 10.7668/hbnxb.20193378.
|
|
Li S S, Huang M T, Qing Y H, Xu J, Huang J M, Ling H, Que Y X, Huang N. Bioinformatics and expression pattern analysis of E3 ubiquitin ligase gene PRT1 in sugarcane[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(1): 168-177.
|
[46] |
Bao Y, Wang C T, Jiang C M, Pan J, Zhang G B, Liu H, Zhang H X. The tumor necrosis factor receptor-associated factor(TRAF)-like family protein SEVEN IN ABSENTIA 2(SINA2)promotes drought tolerance in an ABA-dependent manner in Arabidopsis[J]. New Phytologist, 2014, 202(1):174-187.doi: 10.1111/nph.12644.
|
[47] |
Ren Z Y, Liu W, Wang X X, Chen M J, Zhao J J, Zhang F, Feng H J, Liu J, Yang D G, Ma X F, Li W. Seven in absentia ubiquitin ligases positively regulate defense against Verticillium dahliae in Gossypium hirsutum[J]. Frontiers in Plant Science, 2021,12:760520.doi: 10.3389/fpls.2021.760520.
|
[48] |
Bae H, Kim S K, Cho S K, Kang B G, Kim W T. Overexpression of OsRDCP1,a rice RING domain-containing E3 ubiquitin ligase,increased tolerance to drought stress in rice( Oryza sativa L.)[J]. Plant Science, 2011, 180(6):775-782.doi: 10.1016/j.plantsci.2011.02.008.
|
[49] |
Gao T, Wu Y R, Zhang Y Y, Liu L J, Ning Y S, Wang D J, Tong H N, Chen S Y, Chu C C, Xie Q. OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice[J]. Plant Molecular Biology, 2011, 76(1):145-156.doi: 10.1007/s11103-011-9775-z.
|
[50] |
Zhang Y Y, Li Y, Gao T, Zhu H, Wang D J, Zhang H W, Ning Y S, Liu L J, Wu Y R, Chu C C, Guo H S, Xie Q. Arabidopsis SDIR1 enhances drought tolerance in crop plants[J]. Bioscience,Biotechnology,and Biochemistry, 2008, 72(8):2251-2254.doi: 10.1271/bbb.80286.
|
[51] |
Sun H M, Li J T, Li X, Lyu Q, Chen L P, Wang B X, Li L Q. RING E3 ubiquitin ligase TaSADR1 negatively regulates drought resistance in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 2022,170:255-265.doi: 10.1016/j.plaphy.2021.12.004.
|
[52] |
Agbicodo E M, Fatokun C A, Muranaka S, Visser R G F, Linden van der C G. Breeding drought tolerant cowpea:constraints,accomplishments,and future prospects[J]. Euphytica, 2009, 167(3):353-370.doi: 10.1007/s10681-009-9893-8.
|
[53] |
Mao H D, Li S M, Wang Z X, Cheng X X, Li F F, Mei F M, Chen N, Kang Z S. Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings[J]. Plant Biotechnology Journal, 2020, 18(4):1078-1092.doi: 10.1111/pbi.13277.
|
[54] |
Yang J J, Zhang G Q, An J, Li Q X, Chen Y H, Zhao X Y, Wu J J, Wang Y, Hao Q Q, Wang W Q, Wang W. Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat( Triticum aestivum L.)[J]. Plant Science, 2020,298:110596.doi: 10.1016/j.plantsci.2020.110596.
|
[55] |
Zhang X M, Mi Y, Mao H D, Liu S X, Chen L M, Qin F. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize[J]. Plant Biotechnology Journal, 2020, 18(5):1271-1283.doi: 10.1111/pbi.13290.
|