[1] |
|
|
Yu M, Tang H L, Ye X G. Progresses on whea improvement by using transgenic and genome editing technologies[J]. Journal of Plant Genetic Resources, 2023, 24(1):102.
|
[2] |
Jain M, Tyagi A K, Khurana J P. Genome-wide identification,classification,evolutionary expansion and expression analyses of homeobox genes in rice[J]. The FEBS Journal, 2008, 275(11):2845-2861.doi: 10.1111/j.1742-4658.2008.06424.x.
|
[3] |
|
|
Shu Y J. Isolation and expression analysis of soybean Homeobox gene GmSbh1 and its relationship with seed deterioration[D]. Nanjing: Nanjing Agricultural University, 2014.
|
[4] |
Mukherjee K, Brocchieri L, Bürglin T R. A comprehensive classification and evolutionary analysis of plant homeobox genes[J]. Molecular Biology and Evolution, 2009, 26(12):2775-2794.doi: 10.1093/molbev/msp201.
|
[5] |
|
|
Li C Y, Zumu R T, Li X R, Yang Y, Yu Y H, Li B. Research progress on MYB transcription factors in cotton[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(S1):11-17.
|
[6] |
|
|
Ge W D, Wang T H, Gao M L, Fan Z Y, Wang Y S. Genome-wide identification and expression analysis of the HD-Zip gene family under drought stress in hemp[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1):55-62.
|
[7] |
Wang Y, Strauss S, Liu S D, Pieper B, Lymbouridou R, Runions A, Tsiantis M. The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity[J]. Current Biology, 2022, 32(17):3773-3784.e5.doi: 10.1016/j.cub.2022.08.020.
|
[8] |
Tan F Q, Wang W T, Li J J, Lu Y, Zhu B, Hu F F, Li Q, Zhao Y, Zhou D X. A coiled-coil protein associates Polycomb Repressive Complex 2 with KNOX/BELL transcription factors to maintain silencing of cell differentiation-promoting genes in the shoot apex[J]. The Plant Cell, 2022, 34(8):2969-2988.doi: 10.1093/plcell/koac133.
|
[9] |
Dierschke T, Levins J, Lampugnani E R, Ebert B, Zachgo S, Bowman J L. Control of sporophyte secondary cell wall development in Marchantia by a Class Ⅱ KNOX gene[J]. Current Biology, 2024, 34(22):5213-5222.e5.doi: 10.1016/j.cub.2024.09.061.
|
[10] |
Costanzo E, Trehin C, Vandenbussche M. The role of WOX genes in flower development[J]. Annals of Botany, 2014, 114(7):1545-1553.doi: 10.1093/aob/mcu123.
|
[11] |
Sun R B, Zhang X, Ma D, Liu C L. Identification and evolutionary analysis of cotton( Gossypium hirsutum)WOX family genes and their potential function in somatic embryogenesis[J]. International Journal of Molecular Sciences, 2023, 24(13):11077.doi: 10.3390/ijms241311077.
|
[12] |
Liu D, Xia X C, He Z H, Xu S C. A novel homeobox-like gene associated with reaction to stripe rust and powdery mildew in common wheat[J]. Phytopathology, 2008, 98(12):1291-1296.doi: 10.1094/PHYTO-98-12-1291.
|
[13] |
Wang Y T, Zhao H, Xu L Y, Zhang H T, Xing H J, Fu Y, Zhu L. PUB30-mediated downregulation of the HB24-SWEET11 module is involved in root growth inhibition under salt stress by attenuating sucrose supply in Arabidopsis[J]. The New Phytologist, 2023, 237(5):1667-1683.doi: 10.1111/nph.18635.
|
[14] |
Shokrian Hajibehzad S, Silva S S, Peeters N, Stouten E, Buijs G, Smeekens S, Proveniers M. Arabidopsis thaliana rosette habit is controlled by combined light and energy signaling converging on transcriptional control of the TALE homeobox gene ATH1[J]. New Phytologist, 2023, 239(3):1051-1067.doi: 10.1111/nph.19014.
|
[15] |
Matsuoka M, Ichikawa H, Saito A, Tada Y, Fujimura T, Kano-Murakami Y. Expression of a rice homeobox gene causes altered morphology of transgenic plants[J]. The Plant Cell, 1993, 5(9):1039-1048.doi: 10.1105/tpc.5.9.1039.
|
[16] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.doi: 10.1016/j.molp.2020.06.009.
|
[17] |
Jiang H, Gao W, Jiang B L, Liu X, Jiang Y T, Zhang L T, Zhang Y, Yan S N, Cao J J, Lu J, Ma C X, Chang C, Zhang H P. Identification and validation of coding and non-coding RNAs involved in high-temperature-mediated seed dormancy in common wheat[J]. Frontiers in Plant Science, 2023,14:1107277.doi: 10.3389/fpls.2023.1107277.
|
[18] |
Ma S W, Wang M, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. Wheat omics: a platform combining multiple omics data to accelerate functional genomics studies in wheat[J]. Molecular Plant, 2021, 14(12):1965-1968. doi: 10.1016/j.molp.2021.10.006.
|
[19] |
Powell J J, Fitzgerald T L, Stiller J, Berkman P J, Gardiner D M, Manners J M, Henry R J, Kazan K. The defence-associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias[J]. Plant Biotechnology Journal, 2017, 15(4):533-543.doi: 10.1111/pbi.12651.
|
[20] |
Oono Y, Kobayashi F, Kawahara Y, Yazawa T, Handa H, Itoh T, Matsumoto T. Characterisation of the wheat( Triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes:gene expression in Pi-stressed wheat[J]. BMC Genomics, 2013, 14(1):77.doi: 10.1186/1471-2164-14-77.
|
[21] |
Zhang Y M, Liu Z S, Khan A A, Lin Q, Han Y, Mu P, Liu Y G, Zhang H S, Li L Y, Meng X H, Ni Z F, Xin M M. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat( Triticum aestivum L.)[J]. Scientific Reports, 2016,6:21476.doi: 10.1038/srep21476.
|
[22] |
Li Q, Zheng Q, Shen W Y, Cram D, Fowler D B, Wei Y D, Zou J T. Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants[J]. The Plant Cell, 2015, 27(1):86-103.doi: 10.1105/tpc.114.134338.
|
[23] |
Liu Z S, Xin M M, Qin J X, Peng H R, Ni Z F, Yao Y Y, Sun Q X. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat( Triticum aestivum L.)[J]. BMC Plant Biology, 2015, 15(1):152.doi: 10.1186/s12870-015-0511-8.
|
[24] |
Que F, Wang G L, Li T, Wang Y H, Xu Z S, Xiong A S. Genome-wide identification, expansion,and evolution analysis of homeobox genes and their expression profiles during root development in carrot[J]. Functional & Integrative Genomics, 2018, 18(6):685-700.doi: 10.1007/s10142-018-0624-x.
|
[25] |
林艺灵, 刘众杰, 王子诚, 杨毓贤, 王令宇, 张川, 王晨, 贾海锋, 卢素文, 房经贵, 上官凌飞. 葡萄HB基因家族全基因组鉴定及表达分析[J]. 南京农业大学学报, 2022, 45(6):1126-1139.doi: 10.7685/jnau.20210029.
|
|
Lin Y L, Liu Z J, Wang Z C, Yang Y X, Wang L Y, Zhang C, Wang C, Jia H F, Lu S W, Fang J G, Shangguan L F. Genome-wide identification and expression analysis of HB gene family in Vitis vinifera[J]. Journal of Nanjing Agricultural University, 2022, 45(6):1126-1139.
|
[26] |
Agalou A, Purwantomo S, Övernäs E, Johannesson H, Zhu X Y, Estiati A, de Kam R J, Engström P, Slamet-Loedin I H, Zhu Z, Wang M, Xiong L Z, Meijer A H, Ouwerkerk P B F. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members[J]. Plant Molecular Biology, 2008, 66(1/2):87-103.doi: 10.1007/s11103-007-9255-7.
|
[27] |
Maeda N, Matsuta F, Noguchi T, Fujii A, Ishida H, Kitagawa Y, Ishikawa A. The homeodomain-leucine zipper subfamily I contributes to leaf age-and time-dependent resistance to pathogens in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2023, 24(22):16356.doi: 10.3390/ijms242216356.
|
[28] |
Miguel V N, Ribichich K F, Giacomelli J I, Chan R L. Key role of the motor protein Kinesin 13B in the activity of homeodomain-leucine zipper I transcription factors[J]. Journal of Experimental Botany, 2020, 71(20):6282-6296.doi: 10.1093/jxb/eraa379.
|
[29] |
Pehlivan N. Stochasticity in transcriptional expression of a negative regulator of Arabidopsis ABA network[J]. 3 Biotech, 2019, 9(1):15.doi: 10.1007/s13205-018-1542-2.
|