[1] |
|
|
She W, Cui G X, Zhao D B, Xiao C X. Cadmium uptake and transportation in two ramie cultivars under zinc and iron deficiency[J]. Journal of Agro-Environment Science, 2014, 33(2):283-287.
|
[2] |
|
|
Xie A, Luo B L, Deng J B, Gao X X. Characteristics and cause analysis of extreme and persistent drought in summer,autumn and winter in 2022/2023 in Hunan Province[J]. Journal of Arid Meteorology, 2023, 41(6):910-922.
|
[3] |
Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis[J]. Annual Review of Plant Biology, 2002, 53:159-182.doi: 10.1146/annurev.arplant.53.100301.135154.
|
[4] |
Freisinger E. Structural features specific to plant metallothioneins[J]. Journal of Biological Inorganic Chemistry, 2011, 16(7):1035-1045.doi: 10.1007/s00775-011-0801-z.
pmid: 21688177
|
[5] |
Casterline J L, Barnett N M. Cadmium-binding components in soybean plants[J]. Plant Physiology, 1982, 69(5):1004-1007.doi: 10.1104/pp.69.5.1004.
pmid: 16662333
|
[6] |
Zimeri A M, Dhankher O P, McCaig B, Meagher R B. The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation[J]. Plant Molecular Biology, 2005, 58(6):839-855.doi: 10.1007/s11103-005-8268-3.
pmid: 16240177
|
[7] |
Cheng M X, Yuan H R, Wang R H, Zou J N, Liang T, Yang F, Li S Q. Genome-wide identification and analysis of the metallothionein genes in Oryza genus[J]. International Journal of Molecular Sciences, 2021, 22(17):9651.doi: 10.3390/ijms22179651.
|
[8] |
Li R, Yang Y, Cao H P, Peng X, Yu Q, He L S, Chen J, Xiang L E, Liu W H. Heterologous expression of the tobacco metallothionein gene NtMT2F confers enhanced tolerance to Cd stress in Escherichia coli and Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2023, 195:247-255.doi: 10.1016/j.plaphy.2023.01.027.
|
[9] |
Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R. The role of metallothionein in oxidative stress[J]. International Journal of Molecular Sciences, 2013, 14(3):6044-6066.doi: 10.3390/ijms14036044.
pmid: 23502468
|
[10] |
Li Y, Chen Y Y, Yang S G, Tian W M. Cloning and characterization of HbMT2a,a metallothionein gene from Hevea brasiliensis Muell.Arg differently responds to abiotic stress and heavy metals[J]. Biochemical and Biophysical Research Communications, 2015, 461(1):95-101.doi: 10.1016/j.bbrc.2015.03.175.
pmid: 25858315
|
[11] |
Kumar S, Yadav A, Verma R, Dubey A K, Narayan S, Pandey A, Sahu A, Srivastava S, Sanyal I. Metallothionein (MT1):a molecular stress marker in chickpea enhances drought and heavy metal stress adaptive efficacy in transgenic plants[J]. Environmental and Experimental Botany, 2022, 199:104871.doi: 10.1016/j.envexpbot.2022.104871.
|
[12] |
Yang X Y, Lu M Q, Wang Y F, Wang Y R, Liu Z J, Chen S. Response mechanism of plants to drought stress[J]. Horticulturae, 2021, 7(3):50.doi: 10.3390/horticulturae7030050.
|
[13] |
Liu J, Shi X T, Qian M, Zheng L Q, Lian C L, Xia Y, Shen Z G. Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c,from Oryza sativa L.confers copper tolerance in Arabidopsis thaliana[J]. Journal of Hazardous Materials, 2015, 294:99-108.doi: 10.1016/j.jhazmat.2015.03.060.
|
[14] |
Peng J S, Ding G, Meng S, Yi H Y, Gong J M. Enhanced metal tolerance correlates with heterotypic variation in SpMTL,a metallothionein-like protein from the hyperaccumulator Sedum plumbizincicola[J]. Plant,Cell & Environment, 2017, 40(8):1368-1378.doi: 10.1111/pce.12929.
|
[15] |
Jaiswal P S, Mittal N, Randhawa G S. Cyamopsis tetragonoloba type 1 metallothionein ( CtMT1) gene is upregulated under drought stress and its protein product has an additional C-X-C motif and unique metal binding pattern[J]. International Journal of Biological Macromolecules, 2018, 119:1324-1334.doi: 10.1016/j.ijbiomac.2018.08.027.
|
[16] |
Mekawy A M M, Assaha D V M, Ueda A. Constitutive overexpression of rice metallothionein-like gene OsMT-3a enhances growth and tolerance of Arabidopsis plants to a combination of various abiotic stresses[J]. Journal of Plant Research, 2020, 133(3):429-440.doi: 10.1007/s10265-020-01187-y.
|
[17] |
|
|
Tang Z H, Guo X R, Zhang Y Y, An Z G, Yu J H, Zu Y G. Expression of metallothionein-Ⅱ in Arabidopsis thaliana improve desiccation tolerance[J]. Bulletin of Botanical Research, 2005, 25(4):415-418.
|
[18] |
Hassinen V H, Tervahauta A I, Schat H, Kärenlampi S O. Plant metallothioneins-metal chelators with ROS scavenging activity?[J]. Plant Biology, 2011, 13(2):225-232.doi: 10.1111/j.1438-8677.2010.00398.x.
|
[19] |
刘阳, 彭翠, 吴彦辰, 邓夕莞, 毛新芳, 刘忠渊. 盐穗木金属硫蛋白HcMT的体外自由基清除活性及抗氧化能力[J]. 中国生物工程杂志, 2022, 42(9):17-26.doi: 10.13523/j.cb.2204041.
|
|
Liu Y, Peng C, Wu Y C, Deng X W, Mao X F, Liu Z Y. Free radical scavenging activity and antioxidant capacity of metallothionein HcMT from Halostachys caspica in vitro[J]. China Biotechnology, 2022, 42(9):17-26.
|
[20] |
Dubey A K, Kumar N, Kumar A, Ansari M A, Ranjan R, Gautam A, Meenakshi, Sahu N, Pandey V, Behera S K, Mallick S, Pande V, Sanyal I. Over-expression of CarMT gene modulates the physiological performance and antioxidant defense system to provide tolerance against drought stress in Arabidopsis thaliana L.[J]. Ecotoxicology and Environmental Safety, 2019, 171:54-65.doi: 10.1016/j.ecoenv.2018.12.050.
|
[21] |
Qin S Y, Liu H E, Nie Z J, Gao W, Li C, Lin Y H, Zhao P. AsA-GSH cycle and antioxidant enzymes play important roles in Cd tolerance of wheat[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(5):684-690.doi: 10.1007/s00128-018-2471-9.
pmid: 30353306
|
[22] |
Jiang Z Z, Zhu H G, Zhu H Y, Tao Y Z, Liu C Z, Liu J Q, Yang F Q, Li M. Exogenous ABA enhances the antioxidant defense system of maize by regulating the AsA-GSH cycle under drought stress[J]. Sustainability, 2022, 14(5):3071.doi: 10.3390/su14053071.
|
[23] |
Guo W J, Bundithya W, Goldsbrough P B. Characterization of the Arabidopsis metallothionein gene family:tissue-specific expression and induction during senescence and in response to copper[J]. New Phytologist, 2003, 159(2):369-381.doi: 10.1046/j.1469-8137.2003.00813.x.
|
[24] |
Kim Y O, Kang H. Comparative expression analysis of genes encoding metallothioneins in response to heavy metals and abiotic stresses in rice ( Oryza sativa) and Arabidopsis thaliana[J]. Bioscience,Biotechnology,and Biochemistry, 2018, 82(9):1656-1665.doi: 10.1080/09168451.2018.1486177.
|
[25] |
赵良侠, 琚唐丹, 熊蕾, 高坤, 贾兆朴, 凌峰, 马国庆, 郭宏伟, 高也, 高灿红. 非生物胁迫下植物金属硫蛋白基因调控的研究进展[J]. 植物生理学报, 2022, 58(10):1801-1817.doi: 10.13592/j.cnki.ppj.300081.
|
|
Zhao L X, Ju T D, Xiong L, Gao K, Jia Z P, Ling F, Ma G Q, Guo H W, Gao Y, Gao C H. Research advances on gene regulation of metallothionein in plants under abiotic stress[J]. Plant Physiology Journal, 2022, 58(10):1801-1817.
|
[26] |
Liu J Y, Zhang J, Kim S H, Lee H S, Marinoia E, Song W Y. Characterization of Brassica rapa metallothionein and phytochelatin synthase genes potentially involved in heavy metal detoxification[J]. PLoS One, 2021, 16(6):e0252899.doi: 10.1371/journal.pone.0252899.
|
[27] |
Lee S U, Mun B G, Bae E K, Kim J Y, Kim H H, Shahid M, Choi Y I, Hussain A, Yun B W. Drought stress-mediated transcriptome profile reveals NCED as a key player modulating drought tolerance in Populus davidiana[J]. Frontiers in Plant Science, 2021, 12:755539.doi: 10.3389/fpls.2021.755539.
|
[28] |
Wani S H, Anand S, Singh B, Bohra A, Joshi R. WRKY transcription factors and plant defense responses:latest discoveries and future prospects[J]. Plant Cell Reports, 2021, 40(7):1071-1085.doi: 10.1007/s00299-021-02691-8.
|
[29] |
赵爽, 葛朝红, 石鹤飞, 闵卓, 王广鹏, 李伟明. 板栗WRKY基因家族鉴定及其在干旱胁迫下的表达分[J]. 华北农学报, 2024, 39(1): 72-82. doi: 10.7668/hbnxb.20194000.
|
|
Zhao S, Ge C H, Shi H F, Min Z, Wang G P, Li W M. Identification and expression analysis of the chestnut WRKY gene family under drought stress[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 72-82.
doi: 10.7668/hbnxb.20194000
|
[30] |
|
|
Che Y M, Sun Y J, Lu S C, Zhao F G, Hou L X, Liu X. AtWRKY40 functions in drought stress response in Arabidopsis thaliana[J]. Plant Physiology Journal, 2018, 54(3):456-464.
|
[31] |
Mukherjee A, Dwivedi S, Bhagavatula L, Datta S. Integration of light and ABA signaling pathways to combat drought stress in plants[J]. Plant Cell Reports, 2023, 42(5):829-841.doi: 10.1007/s00299-023-02999-7.
|