| [1] |
|
|
Li L X, Chen B Y, Yan G X, Gao G Z, Xu K, Xie T, Zhang F G, Wu X M. Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China[J]. Journal of Plant Genetic Resources, 2020, 21(1):1-19.
|
| [2] |
|
|
Feng H T, Wang H Z. Security strategy for the nation's edible vegetable oil supplies under the new circumstances[J]. Chinese Journal of Oil Crop Sciences, 2024, 46(2):221-227.
|
| [3] |
Wang X F, Liu G H, Yang Q, Hua W, Liu J, Wang H Z. Genetic analysis on oil content in rapeseed ( Brassica napus L.)[J]. Euphytica, 2010, 173(1):17-24.doi: 10.1007/s10681-009-0062-x.
|
| [4] |
Hua W, Li R J, Zhan G M, Liu J, Li J, Wang X F, Liu G H, Wang H Z. Maternal control of seed oil content in Brassica napus:the role of silique wall photosynthesis[J]. The Plant Journal, 2012, 69(3):432-444.doi: 10.1111/j.1365-313x.2011.04802.x.
|
| [5] |
Guo Y L, Si P, Wang N, Wen J, Yi B, Ma C Z, Tu J X, Zou J T, Fu T D, Shen J X. Genetic effects and genotype environment interactions govern seed oil content in Brassica napus L.[J]. BMC Genetics, 2017, 18(1):1.doi: 10.1186/s12863-016-0468-0.
|
| [6] |
Xiao Z C, Zhang C, Tang F, Yang B, Zhang L Y, Liu J S, Huo Q, Wang S F, Li S T, Wei L J, Du H, Qu C M, Lu K, Li J N, Li N N. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop Brassica napus[J]. Biotechnology for Biofuels, 2019, 12(1):216.doi: 10.1186/s13068-019-1557-x.
|
| [7] |
Wang H Y, Wang Q, Pak H, Yan T, Chen M X, Chen X Y, Wu D Z, Jiang L X. Genome-wide association study reveals a patatin-like lipase relating to the reduction of seed oil content in Brassica napus[J]. BMC Plant Biology, 2021, 21(1):6.doi: 10.1186/s12870-020-02774-w.
|
| [8] |
Li L, Tian Z T, Chen J, Tan Z D, Zhang Y T, Zhao H, Wu X W, Yao X, Wen W W, Chen W, Guo L. Characterization of novel loci controlling seed oil content in Brassica napus by marker metabolite-based multi-omics analysis[J]. Genome Biology, 2023, 24(1):141.doi: 10.1186/s13059-023-02984-z.
|
| [9] |
|
|
Wu X C, He R S, Xiao S D, Zhang Z Q, Yang L, Liu Z S, Chen H. Identification and candidate gene mining of stem lodging resistance in Brassica napus[J].Acta Agriculturae Boreali-Sinica, 2024, 39(4):54-63.
|
| [10] |
周弘峰, 朱思颖, 贺丹, 刘丽莉, 陈道宗, 谭晨, 张大为, 严明理. 紫叶甘蓝型油菜花青素合成的转录组-代谢组联合分析[J]. 华北农学报, 2024, 39(3):25-34.doi: 10.7668/hbnxb.20194754.
|
|
Zhou H F, Zhu S Y, He D, Liu L L, Chen D Z, Tan C, Zhang D W, Yan M L. Transcriptomic and metabolomic analysis of anthocyanin synthesis in purple leaf Brassica napus[J].Acta Agriculturae Boreali-Sinica, 2024, 39(3):25-34.
|
| [11] |
Shahid M, Cai G Q, Zu F, Zhao Q, Qasim M U, Hong Y Y, Fan C C, Zhou Y M. Comparative transcriptome analysis of developing seeds and silique wall reveals dynamic transcription networks for effective oil production in Brassica napus L.[J]. International Journal of Molecular Sciences, 2019, 20(8):1982.doi: 10.3390/ijms20081982.
|
| [12] |
Niu Y, Wu L M, Li Y H, Huang H L, Qian M C, Sun W, Zhu H, Xu Y F, Fan Y H, Mahmood U, Xu B B, Zhang K, Qu C M, Li J N, Lu K. Deciphering the transcriptional regulatory networks that control size,color,and oil content in Brassica rapa seeds[J]. Biotechnology for Biofuels, 2020, 13(1):90.doi: 10.1186/s13068-020-01728-6.
|
| [13] |
Su L Y, Wan S Q, Zhou J M, Shao Q S, Xing B C. Transcriptional regulation of plant seed development[J]. Physiologia Plantarum, 2021, 173(4):2013-2025.doi: 10.1111/ppl.13548.
|
| [14] |
Elahi N, Duncan R W, Stasolla C. Decreased seed oil production in FUSCA3 Brassica napus mutant plants[J]. Plant Physiology and Biochemistry, 2015, 96:222-230.doi: 10.1016/j.plaphy.2015.08.002.
|
| [15] |
Wu X L, Liu Z H, Hu Z H, Huang R Z. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed[J]. Journal of Integrative Plant Biology, 2014, 56(6):582-593.doi: 10.1111/jipb.12158.
|
| [16] |
Tan H L, Yang X H, Zhang F X, Zheng X, Qu C M, Mu J Y, Fu F Y, Li J N, Guan R Z, Zhang H S, Wang G D, Zuo J R. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds[J]. Plant Physiology, 2011, 156(3):1577-1588.doi: 10.1104/pp.111.175000.
|
| [17] |
曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5):1136-1146.doi: 10.3724/SP.J.1006.2024.34152.
|
|
Cao S, Yao M, Ren R, Jia Y, Xiang X R, Li W, He X, Liu Z S, Guan C Y, Qian L W, Xiong X H. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus[J].Acta Agronomica Sinica, 2024, 50(5):1136-1146.
|
| [18] |
Yao M, He D, Li W, Xiong X H, He X, Liu Z S, Guan C Y, Qian L W. Identification of environment-insensitive genes for oil content by combination of transcriptome and genome-wide association analysis in rapeseed[J]. Biotechnology for Biofuels and Bioproducts, 2024, 17(1):29.doi: 10.1186/s13068-024-02480-x.
|
| [19] |
Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, Xia R. TBtools-II:a "one for all,all for one" bioinformatics platform for biological big-data mining[J]. Molecular Plant, 2023, 16(11):1733-1742.doi: 10.1016/j.molp.2023.09.010.
|
| [20] |
Walker A M, Cliff A, Romero J, Shah M B, Jones P, Felipe Machado Gazolla J G, Jacobson D A, Kainer D. Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data[J]. Computational and Structural Biotechnology Journal, 2022, 20:3372-3386.doi: 10.1016/j.csbj.2022.06.037.
|
| [21] |
Fu Y, Zhang D Q, Gleeson M, Zhang Y F, Lin B G, Hua S J, Ding H D, Frauen M, Li J N, Qian W, Yu H S. Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping[J]. Euphytica, 2016, 213(1):17.doi: 10.1007/s10681-016-1817-9.
|
| [22] |
|
|
Fan S H, Liu N, Hua W. Research advances in the biosynthesis and regulation of lipid in oil crops[J]. Chinese Journal of Oil Crop Sciences, 2021, 43(3):361-375.
|
| [23] |
Li-Beisson Y, Shorrosh B, Beisson F, Andersson M X, Arondel V, Bates P D, Baud S, Bird D, DeBono A, Durrett T P, Franke R B, Graham I A, Katayama K, Kelly A A, Larson T, Markham J E, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid K M, Wada H, Welti R, Xu C C, Zallot R, Ohlrogge J. Acyl-lipid metabolism[J]. The Arabidopsis Book, 2013, 11:e0161.doi: 10.1199/tab.0161.
|
| [24] |
Shi L, Katavic V, Yu Y Y, Kunst L, Haughn G. Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil[J]. The Plant Journal, 2012, 69(1):37-46.doi: 10.1111/j.1365-313x.2011.04768.x.
|
| [25] |
Takami T, Shibata M, Kobayashi Y, Shikanai T. De novo biosynthesis of fatty acids plays critical roles in the response of the photosynthetic machinery to low temperature in Arabidopsis[J]. Plant and Cell Physiology, 2010, 51(8):1265-1275.doi: 10.1093/pcp/pcq085.
|
| [26] |
Hsiao A S, Yeung E C, Ye Z W, Chye M L. The Arabidopsis cytosolic acyl-CoA-binding proteins play combinatory roles in pollen development[J]. Plant and Cell Physiology, 2015, 56(2):322-333.doi: 10.1093/pcp/pcu163.
|
| [27] |
Wang T Y, Xing J W, Liu X Y, Liu Z S, Yao Y Y, Hu Z R, Peng H R, Xin M M, Zhou D X, Zhang Y R, Ni Z F. Histone acetyltransferase general control non-repressed protein 5 (GCN5) affects the fatty acid composition of Arabidopsis thaliana seeds by acetylating fatty acid desaturase3 ( FAD3)[J]. The Plant Journal, 2016, 88(5):794-808.doi: 10.1111/tpj.13300.
|
| [28] |
Lusk H J, Neumann N, Colter M, Roth M R, Tamura P, Yao L B, Shiva S, Shah J, Schrick K, Durrett T P, Welti R. Lipidomic analysis of Arabidopsis T-DNA insertion lines leads to identification and characterization of C-Terminal alterations in fatty acid desaturase 6[J]. Plant and Cell Physiology, 2022, 63(9):1193-1204.doi: 10.1093/pcp/pcac088.
|
| [29] |
Wang H Y, Guo J H, Lambert K N, Lin Y. Developmental control of Arabidopsis seed oil biosynthesis[J]. Planta, 2007, 226(3):773-783.doi: 10.1007/s00425-007-0524-0.
|
| [30] |
Zumajo-Cardona C, Aguirre M, Castillo-Bravo R, Mizzotti C, Di Marzo M, Banfi C, Mendes M A, Spillane C, Colombo L, Ezquer I. Maternal control of triploid seed development by the TRANSPARENT TESTA 8 (TT8) transcription factor in Arabidopsis thaliana[J]. Scientific Reports, 2023, 13:1316.doi: 10.1038/s41598-023-28252-5.
|
| [31] |
Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T. VND-INTERACTING2,a NAC domain transcription factor,negatively regulates xylem vessel formation in Arabidopsis[J]. The Plant Cell, 2010, 22(4):1249-1263.doi: 10.1105/tpc.108.064048.
|
| [32] |
Ohbayashi I, Lin C Y, Shinohara N, Matsumura Y, Machida Y, Horiguchi G, Tsukaya H, Sugiyama M. Evidence for a role of ANAC082 as a ribosomal stress response mediator leading to growth defects and developmental alterations in Arabidopsis[J]. The Plant Cell, 2017, 29(10):2644-2660.doi: 10.1105/tpc.17.00255.
|
| [33] |
Wang W J, Ryu K H, Bruex A, Barron C, Schiefelbein J. Molecular basis for a cell fate switch in response to impaired ribosome biogenesis in the Arabidopsis root epidermis[J]. The Plant Cell, 2020, 32(7):2402-2423.doi: 10.1105/tpc.19.00773.
|
| [34] |
Canales J, Verdejo J, Carrasco-Puga G, Castillo F M, Arenas-M A, Calderini D F. Transcriptome analysis of seed weight plasticity in Brassica napus[J]. International Journal of Molecular Sciences, 2021, 22(9):4449.doi: 10.3390/ijms22094449.
|