[1] |
Marques de Carvalho L, Benda N D, Vaughan M M, Cabrera A R, Hung K, Cox T, Abdo Z, Allen L H, Teal P E A. Mi-1-mediated nematode resistance in tomatoes is broken by short-term heat stress but recovers over time[J]. Journal of Nematology, 2015, 47(2):133-140.
pmid: 26170475
|
[2] |
Göknan A, Sevilhan M. Resistance response of tomato cultivars and rootstocks carrying the Mi-1.2 gene to isolates of Meloidogyne arenaria, M.incognita,and M.javanica at two different growing periods[J]. Horticultural Science and Technology, 2019, 37(4):509-519.doi: 10.7235/HORT.20190051.
doi: 10.7235/HORT.20190051
|
[3] |
Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117):323-329.doi: 10.1038/nature05286.
doi: 10.1038/nature05286
|
[4] |
Zipfel C. Pattern-recognition receptors in plant innate immunity[J]. Current Opinion in Immunology, 2008, 20(1):10-16.doi: 10.1016/j.coi.2007.11.003.
doi: 10.1016/j.coi.2007.11.003
pmid: 18206360
|
[5] |
Couto D, Zipfel C. Regulation of pattern recognition receptor signalling in plants[J]. Nature Reviews Immunology, 2016, 16(9):537-552.doi: 10.1038/nri.2016.77.
doi: 10.1038/nri.2016.77
pmid: 27477127
|
[6] |
Zhou J M, Zhang Y L. Plant immunity:danger perception and signaling[J]. Cell, 2020, 181(5):978-989.doi: 10.1016/j.cell.2020.04.028.
doi: 10.1016/j.cell.2020.04.028
URL
|
[7] |
Saur I M L, Hückelhoven R. Recognition and defence of plant-infecting fungal pathogens[J]. Journal of Plant Physiology, 2021, 256:153324.doi: 10.1016/j.jplph.2020.153324.
doi: 10.1016/j.jplph.2020.153324
URL
|
[8] |
Ye J, Zhang L L, Zhang X, Wu X J, Fang R X. Plant defense networks against insect-borne pathogens[J]. Trends in Plant Science, 2021, 26(3):272-287.doi: 10.1016/j.tplants.2020.10.009.
doi: 10.1016/j.tplants.2020.10.009
pmid: 33277186
|
[9] |
Jaouannet M, Magliano M, Arguel M J, Gourgues M, Evangelisti E, Abad P, Rosso M N. The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression[J]. Molecular Plant-Microbe Interactions, 2013, 26(1):97-105.doi: 10.1094/mpmi-05-12-0130-r.
doi: 10.1094/MPMI-05-12-0130-R
pmid: 22857385
|
[10] |
谢家廉. 南方根结线虫效应蛋白Misp12功能分析和淡紫紫孢菌寄生适应性的比较基因组研究[D]. 武汉: 华中农业大学, 2016.
|
|
Xie J L. Fuctional analysis study of the Meloidogyne incognit effector Misp12/genomic and transcriptom study of the nematophagous Purpureocillium lilacinum 36-1[D]. Wuhan: Huazhong Agricultural University, 2016.
|
[11] |
Gleason C, Polzin F, Habash S S, Zhang L, Utermark J, Grundler F M W, Elashry A. Identification of two Meloidogyne hapla genes and an investigation of their roles in the plant-nematode interaction[J]. Molecular Plant-Microbe Interactions, 2017, 30(2):101-112.doi: 10.1094/mpmi-06-16-0107-r.
doi: 10.1094/mpmi-06-16-0107-r
URL
|
[12] |
doi: 10.13802/j.cnki.zwbhxb.2020.2019066
|
|
Zhao J, Peng D L, Liu S M. Progresses in the researches on the effectors of plant parasitic nematodes[J]. Journal of Plant Protection, 2020, 47(2):245-254.
|
[13] |
Hu H J, Wang C, Li X, Tang Y Y, Wang Y F, Chen S L, Yan S Z. RNA-Seq identification of candidate defense genes targeted by endophytic Bacillus cereus-mediated induced systemic resistance against Meloidogyne incognita in tomato[J]. Pest Management Science, 2018, 74(12):2793-2805.doi: 10.1002/ps.5066.
doi: 10.1002/ps.5066
URL
|
[14] |
Guan T L, Shen J H, Fa Y, Su Y S, Wang X, Li H M. Resistance-breaking population of Meloidogyne incognita utilizes plant peroxidase to scavenge reactive oxygen species,thereby promoting parasitism on tomato carrying Mi-1 gene[J]. Biochemical and Biophysical Research Communications, 2017, 482(1):1-7.doi: 10.1016/j.bbrc.2016.11.040.
doi: 10.1016/j.bbrc.2016.11.040
URL
|
[15] |
Fitoussi N, Borrego E, Kolomiets M V, Qing X, Bucki P, Sela N, Belausov E, Miyara S B. Oxylipins are implicated as communication signals in tomato-root-knot nematode( Meloidogyne javanica)interaction[J]. Scientific Reports, 2021, 11(1):326.doi: 10.1038/s41598-020-79432-6.
doi: 10.1038/s41598-020-79432-6
|
[16] |
Iberkleid I, Sela N, Brown Miyara S. Meloidogyne javanica fatty acid and retinol binding protein(Mj-FAR-1)regulates expression of lipid,cell wall,stress and phenylpropanoid related genes during nematode infection of tomato[J]. BMC Genomics, 2015, 16(1):272.doi: 10.1186/s12864-015-1426-3.
doi: 10.1186/s12864-015-1426-3
|
[17] |
Du C, Jiang J B, Zhang H, Zhao T T, Yang H H, Zhang D Y, Zhao Z T, Xu X Y, Li J F. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita[J]. BMC Genomics, 2020, 21(1):250.doi: 10.1186/s12864-020-6654-5.
doi: 10.1186/s12864-020-6654-5
|
[18] |
Wang X R, Moreno A, Wu H, Ma C, Li Y F, Zhang J A, Yang C, Sun S, Ma W, Geary T. Proteomic profiles of soluble proteins from the esophageal gland in female Meloidogyne incognita[J]. International Journal for Parasitology, 2012(42):1177-1183.doi: 10.1016/j.ijpara.2012.10.008.
doi: 10.1016/j.ijpara.2012.10.008
|
[19] |
Maki M, Suzuki H, Shibata H. Structure and function of ALG-2,a penta-EF-hand calcium-dependent adaptor protein[J]. Science China Life Sciences, 2011, 54(8):770-779.doi: 10.1007/s11427-011-4204-8.
doi: 10.1007/s11427-011-4204-8
URL
|
[20] |
张劲蔼. 南方根结线虫PDCD6基因克隆及表达分析[D]. 广州: 华南农业大学, 2013.
|
|
Zhang J A. Cloning and expression analysis of PDCD6 gene of Meloidogyne incognita[D]. Guangzhou: South China Agricultural University, 2013.
|
[21] |
doi: 10.27152/d.cnki.ghanu.2019.000995
|
|
Li Y. Study on tomato genes expression and giant cells development in the process of MiPDCD6 protein secreted by root-knot nematode suppressing tomato defense[D]. Guangzhou: South China Agricultural University, 2019.
|
[22] |
Jan R, Khan M A, Asaf S, Lee I J, Bae J S, Kim K M. Overexpression of OsCM alleviates BLB stress via phytohormonal accumulation and transcriptional modulation of defense-related genes in Oryza sativa[J]. Scientific Reports, 2020, 10(1):19520.doi: 10.1038/s41598-020-76675-1.
doi: 10.1038/s41598-020-76675-1
|
[23] |
Muñoz-Espinoza V A, López-Climent M F, Casaretto J A, Gómez-Cadenas A. Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid,jasmonic acid and salicylic acid interactions[J]. Frontiers in Plant Science, 2015, 6: 997.doi: 10.3389/fpls.2015.00997.
doi: 10.3389/fpls.2015.00997
|
[24] |
Sun X, Wang P, Jia X, Huo L Q, Che R M, Ma F W. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple[J]. Plant Biotechnology Journal, 2018, 16(2):545-557.doi: 10.1111/pbi.12794.
doi: 10.1111/pbi.12794
URL
|
[25] |
吴路平. 南方根结线虫MiPDCD6蛋白抑制寄主免疫的相关基因克隆及表达分析[D]. 广州: 华南农业大学, 2018.
|
|
Wu L P. Express analysis of MiPDCD6,LeMYB330 and cloning LeCyt-C involved in the precess of root-knot nematode(Meloidogyne incognita)to suppress plant immunity in tomato[D]. Guangzhou: South China Agricultural University, 2018.
|
[26] |
Qin X, Xue B W, Tian H Y, Fang C J, Yu J R, Chen C, Xue Q, Jones J, Wang X. An unconventionally secreted effector from the root knot nematode Meloidogyne incognita,Mi-ISC-1,promotes parasitism by disrupting salicylic acid biosynthesis in host plants[J]. Molecular Plant Pathology, 2022, 23(4):516-529.doi: 10.1111/mpp.13175.
doi: 10.1111/mpp.13175
URL
|
[27] |
Deng Y X, Lu S F. Biosynthesis and regulation of phenylpropanoids in plants[J]. Critical Reviews in Plant Sciences, 2017, 36(4):257-290.doi: 10.1080/07352689.2017.1402852.
doi: 10.1080/07352689.2017.1402852
URL
|
[28] |
马伟杰. 番茄根部cDNA文库构建及MiPDCD6互作蛋白的初步筛选[D]. 广州: 华南农业大学, 2014.
|
|
Ma W J. Construction of tomato root cDNA library and preliminary screening of MiPDCD6 interacting proteins[D]. Guangzhou: South China Agricultural University, 2014.
|
[29] |
谷晓勇, 刘扬, 刘利静. 植物激素水杨酸生物合成和信号转导研究进展[J]. 遗传, 2020, 42(9):858-869.
|
|
Gu X Y, Liu Y, Liu L J. Progress on the biosynthesis and signal transduction of phytohormone salicylic acid[J]. Hereditas, 2020, 42(9):858-869.doi: 10.16288/j.yczz.20-173.
doi: 10.16288/j.yczz.20-173
|
[30] |
Lefevere H, Bauters L, Gheysen G. Salicylic acid biosynthesis in plants[J]. Frontiers in Plant Science, 2020, 11:338.doi: 10.3389/fpls.2020.00338.
doi: 10.3389/fpls.2020.00338
pmid: 32362901
|
[31] |
Wildermuth M C, Dewdney J, Wu G, Ausubel F M. Isochorismate synthase is required to synthesize salicylic acid for plant defence[J]. Nature, 2001, 414(6863):562-565.doi: 10.1038/35107108.
doi: 10.1038/35107108
|
[32] |
Torrens-Spence M P, Bobokalonova A, Carballo V, Glinkerman, C M, Pluskal T, Shen A, Weng J K. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis[J]. Molecular Plant, 2019, 12(12):1577-1586.doi: 10.1016/j.molp.2019.11.005.
doi: S1674-2052(19)30369-7
pmid: 31760159
|
[33] |
Rekhter D, Lüdke D, Ding Y L, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y L, Feussner I. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid[J]. Science, 2019, 365(6452):498-502.doi: 10.1126/science.aaw1720.
doi: 10.1126/science.aaw1720
pmid: 31371615
|
[34] |
Nawrath C, Heck S, Parinthawong N, Métraux J P. EDS5,an essential component of salicylic acid dependent signaling for disease resistance in Arabidopsis,is a member of the MATE transporter family[J]. The Plant Cell, 2002, 14(1):275-286.doi: 10.1105/tpc.010376.
doi: 10.1105/tpc.010376
URL
|
[35] |
Serrano M, Wang B J, Aryal B, Garcion C, Abou-Mansour E, Heck S, Geisler M, Mauch F, Nawrath C, M traux J P. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5[J]. Plant Physiology, 2013, 162(4):1815-1821.doi: 10.1104/pp.113.218156.
doi: 10.1104/pp.113.218156
pmid: 23757404
|
[36] |
Strawn M A, Marr S K, Inoue K, Inada N, Zubieta C, Wildermuth M C. Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses[J]. The Journal of Biological Chemistry, 2007, 282(8):5919-5933.doi: 10.1074/jbc.m605193200.
doi: 10.1074/jbc.m605193200
URL
|
[37] |
Garcion C, Lohmann A, Lamodière E, Catinot J, Buchala A, Doermann P, Métraux J P. Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis[J]. Plant Physiology, 2008, 147(3):1279-1287.doi: 10.1104/pp.108.119420.
doi: 10.1104/pp.108.119420
URL
|
[38] |
Ribnicky D M, Shulae V V, Raskin I I. Intermediates of salicylic acid biosynthesis in tobacco[J]. Plant Physiology, 1998, 118(2):565-572.doi: 10.1104/pp.118.2.565.
doi: 10.1104/pp.118.2.565
pmid: 9765542
|
[39] |
Ogawa D, Nakajima N, Seo S, Mitsuhara I, Kamada H, Ohashi Y. The phenylalanine pathway is the main route of salicylic acid biosynthesis in Tobacco mosaic virus-infected tobacco leaves[J]. Plant Biotechnology, 2006, 23(4):395-398.doi: 10.5511/plantbiotechnology.23.395.
doi: 10.5511/plantbiotechnology.23.395
URL
|
[40] |
Thomas V. Phenylpropanoid biosynthesis[J]. Molecular Plant, 2010, 3(1):2-20.doi: 10.1093/mp/ssp106.
doi: 10.1093/mp/ssp106
pmid: 20035037
|
[41] |
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0508
|
|
Li Z W, Liu P Y, Chen J S, Liao J L, Lin B R, Zhuo K. Identification of rice genes responding to both the nematode effector MgMO237 and its interacting protein OsCRRSP55[J]. Biotechnology Bulletin, 2021, 37(7):88-97.
|
[42] |
Zhao J L, Mao Z C, Sun Q H, Liu Q, Jian H, Xie B Y. MiMIF-2 effector of Meloidogyne incognita exhibited enzyme activities and potential roles in plant salicylic acid synthesis[J]. International Journal of Molecular Sciences, 2020, 21(10):3507.doi: 10.3390/ijms21103507.
doi: 10.3390/ijms21103507
URL
|
[43] |
doi: 10.7668/hbnxb.20192811
|
|
Wei Y R, Zhao S L, Cheng X H, Yan Q, Liu N, Zhang Y X. Effect and mechanism of the disease resistance to pear black spot induced by salicylic acid in Yali[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2): 183-191.
doi: 10.7668/hbnxb.20192811
|
[44] |
doi: 10.27327/d.cnki.gshnu.2020.000055
|
|
Zhang G X. Interaction of calcium and salicylic acid in enhancing resistance of tomato to Botrytis cinerea[D]. Shenyang: Shenyang Agricultural University, 2020.
|
[45] |
doi: 10.11937/bfyy.20203220
|
|
Li T, Zhang Z P, Xu L R, Liu K R, Geng X Q, Sun S. Expression analysis of related genes after inoculation of TYLCV in tomato[J]. Northern Horticulture, 2021(8):1-8.
|