[1] |
Li H, Li J, Xu R F, Qin R Y, Song F S, Li L, Wei P C, Yang J B. Isolation of five rice nonendosperm tissue-expressed promoters and evaluation of their activities in transgenic rice[J]. Plant Biotechnology Journal, 2018, 16(6):1138-1147.doi: 10.1111/pbi.12858.
pmid: 29105251
|
[2] |
Chenarani N, Emamjomeh A, Rahnama H, Zamani K, Solouki M. Characterization of sucrose binding protein as a seed-specific promoter in transgenic tobacco Nicotiana tabacum L.[J]. PLoS One, 2022, 17(6):e0268036.doi: 10.1371/journal.pone.0268036.
|
[3] |
Li Q F, Yu J W, Lu J, Fei H Y, Luo M, Cao B W, Huang L C, Zhang C Q, Liu Q Q. Seed-specific expression of OsDWF4,a rate-limiting gene involved in brassinosteroids biosynthesis,improves both grain yield and quality in rice[J]. Journal of Agricultural and Food Chemistry, 2018, 66(15):3759-3772.doi: 10.1021/acs.jafc.8b00077.
|
[4] |
Salimath S S, T B, A R, Zhang W, Cahoon E B, Dowd M K, Wedegaertner T C, Hake K D, Chapman K D. Production of tocotrienols in seeds of cotton( Gossypium hirsutum L.)enhances oxidative stability and offers nutraceutical potential[J]. Plant Biotechnology Journal, 2021, 19(6):1268-1282.doi: 10.1111/pbi.13557.
|
[5] |
Deng S R, Lu L H, Li J Y, Du Z Z, Liu T T, Li W J, Xu F S, Shi L, Shou H X, Wang C. Purple acid phosphatase 10c encodes a major acid phosphatase that regulates plant growth under phosphate-deficient conditions in rice[J]. Journal of Experimental Botany, 2020, 71(14):4321-4332.doi: 10.1093/jxb/eraa179.
pmid: 32270183
|
[6] |
Yang J, Xing G J, Niu L, He H L, Guo D Q, Du Q, Qian X Y, Yao Y, Li H Y, Zhong X F, Yang X D. Improved oil quality in transgenic soybean seeds by RNAi-mediated knockdown of GmFAD2-1B[J]. Transgenic Research, 2018, 27(2):155-166.doi: 10.1007/s11248-018-0063-4.
pmid: 29476327
|
[7] |
Lee E J, Oh M, Hwang J U, Li-Beisson Y H, Nishida I, Lee Y. Seed-specific overexpression of the pyruvate transporter BASS2 increases oil content in Arabidopsis seeds[J]. Frontiers in Plant Science, 2017, 8:194-204.doi: 10.3389/fpls.2017.00194.
|
[8] |
Liu B, Teng D, Wang X M, Yang Y L, Wang J H. Expression of the soybean allergenic protein P34 in Escherichia coli and its indirect ELISA detection method[J]. Applied Microbiology and Biotechnology, 2012, 94(5):1337-1345.doi: 10.1007/s00253-012-4006-3.
|
[9] |
Wilson S, Martinez-Villaluenga C, De Mejia E G. Purification,thermal stability,and antigenicity of the immunodominant soybean allergen P34 in soy cultivars,ingredients,and products[J]. Journal of Food Science, 2008, 73(6):T106-T114.doi: 10.1111/j.1750-3841.2008.00834.x.
pmid: 19241594
|
[10] |
Morita H, Kaneko H, Ohnishi H, Kato Z, Kubota K, Yamamoto T, Matsui E, Teramoto T, Fukao T, Kasahara K, Kondo N. Structural property of soybean protein P34 and specific IgE response to recombinant P34 in patients with soybean allergy[J]. International Journal of Molecular Medicine, 2012, 29(2):153-158.doi: 10.3892/ijmm.2011.841.
|
[11] |
Zhao L P, Kong X Z, Zhang C M, Hua Y F, Chen Y M. Soybean P34 probable thiol protease probably has proteolytic activity on oleosins[J]. Journal of Agricultural and Food Chemistry, 2017, 65(28):5741-5750.doi: 10.1021/acs.jafc.7b02190.
pmid: 28656754
|
[12] |
Cheng L S, Wei S, Liu K C, Zhao X, Zhang J, Zhao Y. Identification of the inducible activity in the promoter of the soybean BBI-DII gene exposed to abiotic stress or abscisic acid[J]. Physiology and Molecular Biology of Plants, 2023, 29(7):947-957.doi: 10.1007/s12298-023-01342-4.
|
[13] |
Chen C, Luo L N, Xu C L, Yang X, Liu T, Luo J Y, Shi W, Yang L, Zheng Y, Yang J. Tumor specificity of WNT ligands and receptors reveals universal squamous cell carcinoma oncogenes[J]. BMC Cancer, 2022, 22(1):790.doi: 10.1186/s12885-022-09898-2.
pmid: 35850748
|
[14] |
Xun H W, Zhang X, Yu J M, Pang J S, Wang S C, Liu B, Dong Y S, Jiang L L, Guo D Q. Analysis of expression characteristics of soybean leaf and root tissue-specific promoters in Arabidopsis and soybean[J]. Transgenic Research, 2021, 30(6):799-810.doi: 10.1007/s11248-021-00266-7.
|
[15] |
Chen Z, Zhang J T, Wang L G. ALA induces stomatal opening through regulation among PTPA,PP2AC,and SnRK2.6[J]. Frontiers in Plant Science, 2023, 14:1206728.doi: 10.3389/fpls.2023.1206728.
|
[16] |
de Silva K K, Dunwell J M, Wickramasuriya A M. Weighted gene correlation network analysis(WGCNA)of Arabidopsis somatic embryogenesis(SE)and identification of key gene modules to uncover SE-associated hub genes[J]. International Journal of Genomics, 2022, 2022:7471063.doi: 10.1155/2022/7471063.
|
[17] |
|
|
Liu B L, Jiang Y Y, Cao D, Chang Y Z, Li Y. Cloning of HorD promoter and its seed-specific expression analysis in barley[J]. Journal of Triticeae Crops, 2023, 43(10):1234-1240.
|
[18] |
|
|
Wang B, Wang L P, Yang C Y, Guo H Y, Wei J C. Construction of E-box motifs and the analysis of its interaction with BplMYB46 transcription factor of Betula platyphylla[J]. Biotechnology Bulletin, 2018, 34(12):110-115.
|
[19] |
Chen Y H, Han Y Y, Zhang M, Zhou S, Kong X Z, Wang W. Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants[J]. PLoS One, 2016, 11(4):e0153494.doi: 10.1371/journal.pone.0153494.
|
[20] |
Sunkara S, Bhatnagar-Mathur P, Sharma K K. Isolation and functional characterization of a novel seed-specific promoter region from peanut[J]. Applied Biochemistry and Biotechnology, 2014, 172(1):325-339.doi: 10.1007/s12010-013-0482-x.
pmid: 24078220
|
[21] |
|
|
Yao L X, Su J, Guo X R, Li F L, He Y R, Zou X P, Chen S C. Cloning and expression analysis of PtMLP1 promoter in Poncirus trifoliata[J]. Scientia Agricultura Sinica, 2023, 56(24):4906-4915.
|
[22] |
Yin G J, Xu H L, Liu J Y, Gao C, Sun J Y, Yan Y M, Hu Y K. Screening and identification of soybean seed-specific genes by using integrated bioinformatics of digital differential display,microarray,and RNA-seq data[J]. Gene, 2014, 546(2):177-186.doi: 10.1016/j.gene.2014.06.021.
|
[23] |
Luo K M, Zhang G F, Deng W, Luo F T, Qiu K, Pei Y. Functional characterization of a cotton late embryogenesis-abundant D113 gene promoter in transgenic tobacco[J]. Plant Cell Reports, 2008, 27(4):707-717.doi: 10.1007/s00299-007V0482-9.
|
[24] |
Bhunia R K, Chakraborty A, Kaur R, Gayatri T, Bhattacharyya J, Basu A, Maiti M K, Sen S K. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops[J]. Plant Molecular Biology, 2014, 86(4):351-365.doi: 10.1007/s11103-014-0233-6.
|
[25] |
Dossa K, Mmadi M A, Zhou R, Zhang T Y, Su R Q, Zhang Y J, Wang L H, You J, Zhang X R. Depicting the core transcriptome modulating multiple abiotic stresses responses in sesame( Sesamum indicum L.)[J]. International Journal of Molecular Sciences, 2019, 20(16):3930.doi: 10.3390/ijms20163930.
|
[26] |
Park M E, Lee K R, Chen G Q, Kim H U. Enhanced production of hydroxy fatty acids in Arabidopsis seed through modification of multiple gene expression[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1):66.doi: 10.1186/s13068-022-02167-1.
|
[27] |
Zhang Y J, Fan N N, Wen W W, Liu S Y, Mo X, An Y, Zhou P. Genome-wide identification and analysis of LEA_2 gene family in alfalfa( Medicago sativa L.)under aluminum stress[J]. Frontiers in Plant Science, 2022, 13:976160.doi: 10.3389/fpls.2022.976160.
|
[28] |
Huang L G, Li X J, Dong L B, Wang B, Pan L. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species[J]. BMC Biology, 2021, 19(1):189.doi: 10.1186/s12915-021-01114-0.
|
[29] |
Chen H, Li M, Qi G, Zhao M, Liu L Y, Zhang J Y, Chen G Y, Wang D W, Liu F Q, Fu Z Q. Two interacting transcriptional coactivators cooperatively control plant immune responses[J]. Science Advances, 2021, 7(45):eabl7173.doi: 10.1126/sciadv.abl7173.
|