[1] |
Dreni L, Zhang D B. Flower development:the evolutionary history and functions of the AGL6 subfamily MADS-box genes[J]. Journal of Experimental Botany, 2016, 67(6):1625-1638.doi: 10.1093/jxb/erw046.
|
[2] |
Wang P, Wang S B, Chen Y, Xu X M, Guang X M, Zhang Y H. Genome-wide analysis of the MADS-box gene family in watermelon[J]. Computational Biology and Chemistry, 2019, 80:341-350.doi: 10.1016/j.compbiolchem.2019.04.013.
pmid: 31082717
|
[3] |
Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theissen G. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens[J]. Molecular Biology and Evolution, 2002, 19(6):801-814.doi: 10.1093/oxfordjournals.molbev.a004137.
pmid: 12032236
|
[4] |
Davies B, Egea-Cortines M, de Andrade Silva E, Saedler H, Sommer H. Multiple interactions amongst floral homeotic MADS box proteins[J]. The EMBO Journal, 1996, 15(16):4330-4343.doi: 10.1002/j.1460-2075.1996.tb00807.x.
|
[5] |
Zhang Y, Butelli E, Alseekh S, Tohge T, Rallapalli G, Luo J, Kawar P G, Hill L, Santino A, Fernie A R, Martin C. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato[J]. Nature Communications, 2015, 6:8635.doi: 10.1038/ncomms9635.
pmid: 26497596
|
[6] |
Gnayfeed M H, Daood H G, Biacs P A, Alcaraz C F. Content of bioactive compounds in pungent spice red pepper(paprika)as affected by ripening and genotype[J]. Journal of the Science of Food and Agriculture, 2001, 81(15):1580-1585.doi: 10.1002/jsfa.982.abs.
|
[7] |
Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor(rin)locus[J]. Science, 2002, 296(5566):343-346.doi: 10.1126/science.1068181.
pmid: 11951045
|
[8] |
Coen E S, Meyerowitz E M. The war of the whorls:genetic interactions controlling flower development[J]. Nature, 1991, 353(6339):31-37.doi: 10.1038/353031a0.
|
[9] |
Theissen G. Development of floral organ identity:stories from the MADS house[J]. Current Opinion in Plant Biology, 2001, 4(1):75-85.doi: 10.1016/s1369-5266(00)00139-4.
pmid: 11163172
|
[10] |
Moon J, Suh S S, Lee H, Choi K R, Hong C B, Paek N C, Kim S G, Lee I. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. The Plant Journal, 2003, 35(5):613-623.doi: 10.1046/j.1365-313x.2003.01833.x.
|
[11] |
Zahn L M, Feng B M, Ma H. Beyond the ABC-model:regulation of floral homeotic genes[M]//Developmental Genetics of the Flower. Amsterdam:Elsevier, 2006:163-207.doi: 10.1016/s0065-2296(06)44004-0.
|
[12] |
Ratcliffe O J, Kumimoto R W, Wong B J, Riechmann J L. Analysis of the Arabidopsis mads affecting flowering gene family:Maf2 prevents vernalization by short periods of cold[J]. The Plant Cell, 2003, 15(5):1159-1169.doi: 10.1105/tpc.009506.
|
[13] |
Moore S, Vrebalov J, Payton P, Giovannoni J. Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato[J]. Journal of Experimental Botany, 2002, 53(377):2023-2030.doi: 10.1093/jxb/erf057.
pmid: 12324526
|
[14] |
Nesi N, Debeaujon I, Jond C, Stewart A J, Jenkins G I, Caboche M, Lepiniec L. The transparent testa16 locus encodes the Arabidopsis bsister mads domain protein and is required for proper development and pigmentation of the seed coat[J]. The Plant Cell, 2002, 14(10):2463-2479.doi: 10.1105/tpc.004127.
|
[15] |
Liljegren S J, Ditta G S, Eshed Y, Savidge B, Bowman J L, Yanofsky M F. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis[J]. Nature, 2000, 404(6779):766-770.doi: 10.1038/35008089.
|
[16] |
Moser M, Asquini E, Miolli G V, Weigl K, Hanke M V, Flachowsky H, Si-Ammour A. The MADS-box gene MdDAM1 controls growth cessation and bud dormancy in apple[J]. Frontiers in Plant Science, 2020, 11:1003.doi: 10.3389/fpls.2020.01003.
|
[17] |
Mou Y F, Yuan C L, Sun Q X, Yan C X, Zhao X B, Wang J, Wang Q, Shan S H, Li C J. MIKC-type MADS-box transcription factor gene family in peanut:genome-wide characterization and expression analysis under abiotic stress[J]. Frontiers in Plant Science, 2022, 13:980933.doi: 10.3389/fpls.2022.980933.
|
[18] |
Ye L X, Zhang J X, Hou X J, Qiu M Q, Wang W F, Zhang J X, Hu C G, Zhang J Z. A MADS-box gene CiMADS43 is involved in citrus flowering and leaf development through interaction with CiAGL9[J]. International Journal of Molecular Sciences, 2021, 22(10):5205.doi: 10.3390/ijms22105205.
|
[19] |
Zheng S, He J J, Lin Z S, Zhu Y Y, Sun J Y, Li L G. Two MADS-box genes regulate vascular cambium activity and secondary growth by modulating auxin homeostasis in Populus[J]. Plant Communications, 2021, 2(5):100134.doi: 10.1016/j.xplc.2020.100134.
|
[20] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method[J]. Methods, 2001, 25(4):402-408.doi: 10.1006/meth.2001.1262.
pmid: 11846609
|
[21] |
吴鹏, 黄思远, 郭茜茜, 王丽, 丁楚琦, 范明玉. 辣椒素3个积累时期miRNA分析[J]. 分子植物育种, 2022:1-10.
|
|
Wu P, Huang S Y, Guo Q Q, Wang L, Ding C Q, Fan M Y. Analysis of related miRNAs in three accumulation periods of capsaicin[J]. Molecular Plant Breeding, 2022:1-10.
|
[22] |
Won S Y, Jung J A, Kim J S. Genome-wide analysis of the MADS-box gene family in Chrysanthemum[J]. Computational Biology and Chemistry, 2021, 90:107424.doi: 10.1016/j.compbiolchem.2020.107424.
|
[23] |
Parenicová L, de Folter S, Kieffer M, Horner D S, Favalli C, Busscher J, Cook H E, Ingram R M, Kater M M, Davies B, Angenent G C, Colombo L. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world[J]. The Plant Cell, 2003, 15(7):1538-1551.doi: 10.1105/tpc.011544.
|
[24] |
Shao S Q, Li B Y, Zhang Z T, Zhou Y, Jiang J, Li X B. Expression of a cotton MADS-box gene is regulated in anther development and in response to phytohormone signaling[J]. Journal of Genetics and Genomics, 2010, 37(12):805-816.doi: 10.1016/S1673-8527(09)60098-9.
|
[25] |
|
|
Sun J H, Yang Y. Cloning and expression of CaMADS from Capsicum annuum[J]. Chinese Journal of Tropical Crops, 2011, 32(10):1853-1857.
|
[26] |
Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Molecular Phylogenetics and Evolution, 2003, 29(3):464-489.doi: 10.1016/s1055-7903(03)00207-0.
pmid: 14615187
|
[27] |
|
|
Dong J J, Liu W, Li M, Wang J Y, He C D, Cai Y M, Wang Q Y, Wang Y Q. Gene expression and phylogenetic analysis of MADS-box family genes in Ginkgo biloba[J]. Plant Physiology Journal, 2018, 54(6):1055-1063.doi: 10.13592/j.cnki.ppj.2017.0574.
|
[28] |
Ma W Y, Liu W, Hou W S, Sun S, Jiang B J, Han T F, Feng Y J, Wu C X. GmNMH7,a MADS-box transcription factor,inhibits root development and nodulation of soybean( Glycine max[L.]Merr.)[J]. Journal of Integrative Agriculture, 2019, 18(3):553-562.doi: 10.1016/s2095-3119(18)61992-6.
|
[29] |
Gaffe J, Lemercier C, Alcaraz J P, Kuntz M. Identification of three tomato flower and fruit MADS-box proteins with a putative histone deacetylase binding domain[J]. Gene, 2011, 471(1/2):19-26.doi: 10.1016/j.gene.2010.10.002.
|
[30] |
Xiong D G, Wang Y L, Tian L Y, Tian C M. MADS-box transcription factor VdMcm1 regulates conidiation,microsclerotia formation,pathogenicity,and secondary metabolism of Verticillium dahliae[J]. Frontiers in Microbiology, 2016, 7:1192.doi: 10.3389/fmicb.2016.01192.
|
[31] |
Heldt H W, Piechulla B. Phenylpropanoids comprise a multitude of plant secondary metabolites and cell wall components[M]//Plant Biochemistry. Amsterdam:Elsevier, 2011:431-449.doi: 10.1016/b978-0-12-384986-1.00018-1.
|
[32] |
Ge H, Shi Y N, Zhang M X, Li X, Yin X R, Chen K S. The MADS-box transcription factor EjAGL65 controls loquat flesh lignification via direct transcriptional inhibition of EjMYB8[J]. Frontiers in Plant Science, 2021, 12:652959.doi: 10.3389/fpls.2021.652959.
|
[33] |
Ge H, Xu H X, Li X Y, Chen J W. The MADS-box gene EjAGL15 positively regulates lignin deposition in the flesh of loquat fruit during its storage[J]. Frontiers in Plant Science, 2023, 14:1166262.doi: 10.3389/fpls.2023.1166262.
|
[34] |
pmid: 15725058
|
[35] |
Zhao X D, Yuan X Y, Chen S, Fu D Q, Jiang C Z. Metabolomic and transcriptomic analyses reveal that a MADS-box transcription factor TDR4 regulates tomato fruit quality[J]. Frontiers in Plant Science, 2019, 10:792.doi: 10.3389/fpls.2019.00792.
|
[36] |
Kong J Q. Phenylalanine ammonia-lyase,a key component used for phenylpropanoids production by metabolic engineering[J]. RSC Advances, 2015, 5(77):62587-62603.doi: 10.1039/C5RA08196C.
|
[37] |
Zhang Z, Liu S Q, Qi L D, Xu L. Changes in capsaicin,flavonoid,free phenolics and enzyme activity during development of pepper fruit[J]. Acta Horticulturae, 2008(768):525-532.doi: 10.17660/actahortic.2008.768.70.
|
[38] |
Meng L, Zhang S Y, Chen B Z, Bai X R, Li Y F, Yang J, Wang W, Li C T, Li Y, Li Z. The MADS-box transcription factor GlMADS1 regulates secondary metabolism in Ganoderma lucidum[J]. Mycologia, 2021, 113(1):12-19.doi: 10.1080/00275514.2020.1810515.
pmid: 33085941
|
[39] |
Christensen J H, Bauw G, Welinder K G, Van Montagu M, Boerjan W. Purification and characterization of peroxidases correlated with lignification in poplar xylem[J]. Plant Physiology, 1998, 118(1):125-135.doi: 10.1104/pp.118.1.125.
pmid: 9733532
|