| [1] 郭军康. 耐Cd植物促生菌对番茄幼苗生长及Cd吸收转运的影响机制[D]. 天津:天津大学, 2014.doi:10.7666/d.D485288. Guo J K.Effects of Cd-tolerant plant growth promoting rhizobacteria on mechanisms of tomato seedlings growth Cd uptake and transport[D].Tianjin:Tianjin University, 2014.
 [2] Kahle H. Response of roots of trees to heavy metals[J].Environmental and Experimental Botany,1993,33(1):99-119.doi:10.1016/0098-8472(93) 90059-O.
 [3] 赵慧博,李丽丽,梁塔娜,张艳欣,黄凤兰,曹清国.重金属铜、镉胁迫下植物响应的研究进展[J].安徽农业科学,2019,47(21):14-16.doi:10.3969/j.issn.0517-6611.2019.21.005.
 Zhao H B, Li L L, Liang T N,Zhang Y X,Huang F L,Cao Q G.Advances in plant response to copper and cadmium stress[J]. Journal of Anhui Agricultural Sciences,2019,47(21):14-16.
 [4] 陈璐.拟南芥糖基转移酶基因 UGT76F1 和 UGT71C3 的功能及分子机制[D].济南:山东大学,2020.doi:10.27272/d.cnki.gshdu.2020.000141.
 Chen L.Function and molecular mechanisms of glycosyltransferase genes UGT76F1 and UGT71C3 in Arabidopsis thaliana[D].Jinan:Shandong University, 2020.
 [5] 杨桂燕. 柽柳 ThVHAc1 基因耐盐及抗镉机制研究[D].哈尔滨:东北林业大学,2014.
 Yang G Y.Salt and cadium tolerance mechanism analysis of ThVHAc1 from Tamarix hispida[D]. Harbin:Northeast Forestry University,2014.
 [6] Xie L P,Hao P F,Cheng Y,Ahmed I M, Cao F B.Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice[J]. Ecotoxicology and Environmental Safety,2018,162(1):71-76.doi:10.1016/j.ecoenv.2018.06.072.
 [7] Adhikari S,Ghosh L,Ayyappan S.Combined effects of water pH and alkalinity on the accumulation of lead,cadmium and chromium to Labeo rohita (Hamilton)[J]. International Journal of Environmental Science and Technology,2006,3(3):289-296.doi:10.1007/BF03325936.
 [8] 李金航, 齐秀慧, 徐程扬,王畅,刘海轩,孙鹏. 黄栌幼苗叶片气体交换对干旱胁迫的短期响应[J]. 林业科学,2015,51(1):29-41.doi:10.11707/j.1001-7488.20150104.
 Li J H, Qi X H,Xu C Y, Wang C, Liu H X, Sun P. Short-Term responses of leaf gas exchange characteristics to drought stress of Cotinus coggygria seedlings[J].Scientia Silvae Sinicae,2015,51(1):29-41.
 [9] 张慧蓉, 张建伟, 张兆沛,吴金祥. 盐碱胁迫对野生地肤种子发芽和幼苗生长的影响[J]. 种子,2010,29(1):15-19.doi:10.3969/j.issn.1001-4705.2010.01.005.
 Zhang H R, Zhang J W, Zhang Z P, Wu J X. Effects of saline-alkali stress on seed germination and seedling growth of wild wancomponents(Kochia scoparia (L.) schrad)[J]. Seed, 2010,29(1):15-19.
 [10] 聂惠, 于海峰, 刘浩明. 向日葵对盐胁迫的反应及其抗盐机理的研究进展[J]. 北方农业学报,2008(6):17-19.doi:10.3969/j.issn.1007-0907.2008.06.009.
 Nie H, Yu H F, Liu H M.Response of sunflower to salt stress and its salt resistance mechanism[J]. Journal of Northern Agriculture,2008(6):17-19.
 [11] Macková H, Hronková M, Dobrá J, Turečková V, Novák O, Lubovská Z, Motyka V, Haisel D, Hájek T, Prášil I T, Gaudinová A, Štorchová H, Ge E, Werner T, Schmülling T, Vanková R. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression[J]. Journal of Experimental Botany,2013,64(10):2805-2815.doi:10.1093/jxb/ert131.
 [12] 张瑞腾, 付秋实, 张磊, 李双桃, 郭仰东, 张红, 李灵芝, 李海平, 王怀松.甜瓜 CmGnT 基因的克隆及非生物胁迫下的表达分析[J]. 园艺学报,2017,44(7):1379-1387.doi:10.16420/j.issn.0513-353x.2016-0932.
 Zhang R T, Fu Q S, Zhang L, Li S T, Guo Y D, Zhang H, Li L Z, Li H P, Wang H S.Cloning and expression analyzing of CmGnT gene in melon under abiotic stresses[J]. Acta Horticulturae Sinica,2017,44(7):1379-1387.
 [13] 蒋晓怡. 拟南芥糖基转移酶基因 UGT75X 参与植物对逆境适应性的作用分析[D]. 济南:山东大学,2017.
 Jiang X Y. Function analysis of Arabidopsis glycosyltransferase gene UGT75X in plant adaptation to stresses[D].Jinan:Shandong University,2017.
 [14] 刘兆华. 拟南芥中与非生物胁迫相关基因 UGT- LIKE、UF1 和 UF2 的初步研究[D].泰安:山东农业大学,2012.
 Liu Z H. Researches on UGT-LIKE, UF1 and UF2 of Arabidopsis involved in abiotic stresses tolerance[D].Taian:Shandong Agricultural University,2012.
 [15] Li Y J,Li P,Wang T, Zhang F J, Huang X X, Hou B K. The maize secondary metabolism glycosyltransferase UFGT2 modifies flavonols and contributes to plant acclimation to abiotic stresses[J]. Annals of Botany,2018,122(7):1203-1217.doi:10.1093/aob/mcy123.
 [16] 张春柳, 赖钟雄. 铁皮石斛原球茎 DoGAUT1 和 DoPGSIP6 基因的克隆及其在不同昼夜温差下的表达分析[J]. 热带作物学报,2015,36(3):456-465.doi:10.3969/j.issn.1000-2561.2015.02.003.
 Zhang C L, Lai Z X. Cloning DoGAUT1 and DoPGSIP6 from protocorms and the expression analysis by qPCR under day-and-night temperature differences in Dendrobium officinale[J].Chinese Journal of Tropical Crops,2015,36(3):456-465.
 [17] Lin F Y, Lu Q X, Xu J H, Shi J R. Cloning and expression analysis of two salt and Fusarium graminearum stress associated UDP-glucosyltransferases genes in wheat[J]. Hereditas,2009,30(12):1608-1614.doi:10.3724/SP.J.1005.2008.01608.
 [18] 秦晶晶, 孙春玉, 张美萍, 王义. 植物UDP-糖基转移酶分类、功能以及进化[J]. 基因组学与应用生物学,2018,37(1):440-450.doi:10.13417/j.gab.037.000440.
 Qin J J, Sun C Y, Zhang M P, Wang Y. Classification, function and evolution of plant UDP-glycosyltransferase[J]. Genomics and Applied Biology,2018,37(1):440-450.
 [19] Bishopp A,Help H, El-Showk S, Weijers D, Scheres B, Friml J, Benková E, Mähönen A P, Helariutta Y. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots[J]. Current Biology, 2011,21(11):917-926.doi:10.1016/j.cub.2011.04.017.
 [20] Yoshida T, Fujita Y, Sayam H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation[J]. The Plant Journal,2010,61(4):672-685.doi:10.1111/j.1365-313X.2009.04092.x.
 [21] Von Saint Paul V, Zhang W, Kanawati B, Geist B, Faus-keβler T, Schmitt-kopplin P, Schäffner A R. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence[J]. The Plant Cell,2011,23(11):4124-4145.doi:10.1105/tpc.111.088443.
 [22] 陈娜, 胡东青, 潘丽娟, 迟晓元, 陈明娜, 王通, 王冕, 杨珍, 禹山林. 花生中UDP-葡萄糖基转移酶基因的克隆及在非生物胁迫下的表达研究[J]. 中国油料作物学报,2014,36(3):308-315.doi:10.7505/j.issn.1007-9084.2014.03.003.
 Chen N, Hu D Q, Pan L J, Chi X Y, Chen M N, Wang T, Wang M, Yang Z, Yu S L.Cloning of UDP-glucosyltransferase gene from peanut (Arachis hypogaea L.) and its expression analysis during abiotic stress[J]. Chinese Journal of Oil Crops,2014,36(3):308-315.
 [23] 李攀. 拟南芥和玉米糖基转移酶基因参与非生物胁迫耐性的功能研究[D].济南:山东大学,2017.
 Li P. Functional analysis of glycosyltransferase genes of Arabidopsis thaliana and Zea mays in tolerance to abiotic stresses[D].Jinan:Shandong University,2017.
 [24] 董瑞瑞. 拟南芥糖基转移酶基因 UGT76E12 的克隆及其参与逆境适应性的作用分析[D].济南:山东大学,2015.doi:10.7666/d.Y2794069.
 Dong R R. The cloning of Arabidopsis glycosyltransferase gene UGT76E12 and its role in plant adaptation to stress[D]. Jinan:Shandong University,2015.
 [25] 狄少康, 尹青岗, 夏亚迎, 庞永珍. 大豆类黄酮糖基转移酶基因 UGT73C19 的功能研究[J]. 中国农业科学,2019,52(20):3507-3519.doi:10.3864/j.issn.0578-1752.2019.20.002.
 Di S K, Yin Q G, Xia Y Y, Pang Y Z. Functional characterization of a UDP:flavonoid glycosyltransferase gene UGT73C19 in Glycine max[J]. Agricultural Science of China,2019,52(20):3507-3519.
 [26] 赵晓祥,冯璐,王宇晖.锌、镉单一及复合胁迫下番茄幼苗生理响应及联合毒性的研究[J].安全与环境学报,2020,20(3):1176-1184.doi:10.13637/j.issn.1009-6094.2019.0660.
 Zhao X X, Feng L, Wang Y H.Physiological response and combined toxicity of tomato seedlings under single and combined stress of zinc and cadmium[J]. Journal of Safety and Environment,2020,20(3):1176-1184.
 [27] 马洪英, 郭锐, 李洪安, 张远芳. 不同盐胁迫处理下番茄种子萌发期的耐盐性研究[J]. 安徽农业科学, 2008, 36(32):13947-13948,13956. doi:10.13989/j.cnki.0517-6611.2008.32.106.
 Ma H Y,Guo R, Li H A, Zhang Y F. Study on salinity tolerance of tomatoes during seed germination under different salt stress conditions[J]. Journal of Anhui Agricultural Sciences,2008,36(32):13947-13948,13956.
 [28] Xie R R, Shang X L, Hai D, Guo F Q. Proteomic analysis of heat stress-responsive proteins during rice grain filling[C]//Abstract book of 2nd international symposium on integrative plant biology. Lanzhou:Annals of Botany,2011.
 [29] 张凤菊. 拟南芥糖基转移酶基因 UGT86A1 参与植物对非生物胁迫耐性的作用研究[D]. 济南:山东大学,2018.
 Zhang F J. Functional analysis of Arabidopsis glucosyltransferase gene UGT86A1 in plant adaptation to abiotic stresses[D].Jinan:Shandong University, 2018.
 [30] 潘维锋,李师鹏.酵母表达系统在植物功能基因组学研究中应用的局限性[J].植物生理学通讯,2006,42(6):1168-1172.
 Pan W F, Li S P.Yeast, a model system to elucidate plant gene function:application and limitation[J]. Plant Physiology Communications,2006,42(6):1168-1172.
 [31] El-Showk S, Ruonala R,Helariutta Y. Crossing paths:Cytokinin signalling and crosstalk[J]. Development,2013,140(7):1373-1383.doi:10.1242/dev.086371.
 [32] 孙延国. 拟南芥糖基转移酶基因耐逆作用研究[D]. 济南:山东大学,2013.
 Sun Y G. Research on the role of Arabidopsis glycosyltransferase genes in abiotic stress tolerance[D]. Jinan:Shandong University,2013.
 [33] 于惠敏, 王会勇, 王军, 侯丙凯.拟南芥细胞分裂素糖基转移酶UGT76C2的N端亮氨酸替换对酶活性的影响[J]. 植物生理学报,2014,50(11):1659-1668.doi:10.13592/j.cnki.ppj.2014.0315.
 Yu H M, Wang H Y, Wang J, Hou B K.Effect of the N-terminal leucine substitution on the enzyme activity of cytokinin glucosyltransferase UGT76C2 of Arabidopsis thaliana[J]. Plant Physiology Journal, 2014, 50(11):1659-1668.
 |