[1] Epstein E, Rains D W, Elzam O E. Resolution of dual mechanisms of potassium absorption by barley roots[J]. PNAS, 1963, 49(5):684-692. doi:10.1073/pnas.49.5.684. [2] 晁毛妮, 温青玉, 张晋玉, 张志勇, 董洁, 于亚鑫. 大豆KUP/HAK/KT钾转运体基因家族的鉴定与表达分析[J]. 西北植物学报, 2017, 37(2):225-234. doi:10.7606/j.issn.1000-4025.2017.02.239. Cao M N, Wen Q Y, Zhang J Y, Zhang Z Y, Dong J, Yu Y X. Research advance of K+ channel AKT1 in plants[J]. Chinese Bulletin of Botany, 2017, 37(2):225-234. [3] Van Kleeff P J M, Gao J, Mol S, Zwart N, Zhang H, Li K W, Boer A H. TheArabidopsis GORK K+-channel is phosphorylated by calcium-dependent protein kinase 21(CPK21), which in turn is activated by 14-3-3 proteins[J]. Plant Physiology and Biochemistry, 2018, 125:219-231. doi:10.1016/j.plaphy.2018.02.013. [4] Castillo J P, Rui H, Basilio D, Das A, Roux B, Latorre R, Bezanilla F, Holmgren M. Mechanism of potassium ion uptake by the Na+/K+-ATPase[J]. Nature Communications, 2015, 6:7622. doi:10.1038/ncomms8622. [5] Gambale F, Uozumi N. Properties of shaker-type potassium channels in higher plants[J]. Journal of Membrane Biology, 2006, 210(1):1-19. doi:10.1007/s00232-006-0856-x. [6] Lebaudy A, Véry A A, Sentenac H. K+, channel activity in plants:Genes, regulations and functions[J]. Febs Letters, 2007, 581(12):2357-2366. doi:10.1016/j.febslet.2007.03.058. [7] 韩敏. 钾转运体KUP7参与拟南芥响应低钾胁迫的功能研究[D]. 北京:中国农业大学, 2015. Hn M. Functional analysis of potassium transporter KUP7 in Arabidopsis responses to low-K+ stress[D]. Beijing:China Agricultural University, 2015. [8] 伍国强, 水清照, 冯瑞军. 植物K+通道AKT1的研究进展[J]. 植物学报, 2017,52(2):225-234. doi:10.11983/CBB16023. W G Q, Shui Q Z, Feng R J. Research advance of K+ channel AKT1 in plants[J]. Chinese Bulletin of Botany, 2017, 52(2):225-234. [9] 傅涛,郝选明. 钾离子通道的研究进展[J]. 内蒙古石油化工, 2010, 36(10):1-4. doi:10.3969/j.issn.1006-7981.2010.10.001. F T, Hao X M. Progress of research on potassium ion channel[J]. Inner Mongolia Petrochemical, 2010, 36(10):1-4. [10] Philippar K, Fuchs I, L then H, Hoth S, Bauer C S, Haga K, Thiel G, Ljung K, Sandberg G, Böttger M, Becker D, Hedrich R. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism[J]. PNAS, 1999, 6(21):12186-12191. doi:10.1073/pnas.96.21.12186. [11] Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon J M, Gaymard F, Grignon C. Cloning and expression in yeast of a plant potassium ion transport system[J]. Science, 1992, 256(5057):663-665. doi:10.1126/science.1585180. [12] Ahmad I, Mian A, Maathuis F J M. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance[J]. Journal of Experimental Botany, 2016, 67(9):2689-2698. doi:10.1093/jxb/erw103. [13] Li J, Wu W H, Wang Y. Potassium channel AKT1 is involved in the auxin-mediated root growth inhibition in Arabidopsis response to low K+ stress[J]. Journal of Integrative Plant Biology,2017, 59(12):895-909. doi:10.1111/jipb.12575. [14] Pyo Y J, Gierth M, Schroeder J I, Cho M H. High-affinity K+ transport in Arabidopsis:AtHAK5 and AKT1 are vital for seedling establishment and post germination growth under low-potassium conditions[J]. Plant Physiology, 2010, 153(2):863-875. doi:10.1104/pp.110.154369. [15] Ma Q, Hu J, Zhou X R, Yuan H J, Kumar T, Luan S, Wang S M. ZxAKT1 is essential for K+ uptake and K+/Na+ homeostasis in the succulent xerophyte Zygophyllum xanthoxylum[J]. The Plant Journal, 2017, 90(1):48-60. doi:10.1111/tpj.13465. [16] Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud J B. A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis[J]. Plant Cell, 2000, 12(6):837-851. doi:10.1105/tpc.12.6.837. [17] Li D D, Guan H, Li F, Liu C Z, Dong Y X, Zhang X S, Gao X Q. Arabidopsis shaker pollen inward K+channel SPIK functions in SnRK1 complex-regulated pollen hydration on the stigma[J]. Special Issue:Sexual Plant Reproduction, 2017, 59(9):604-611. doi:10.1111/jipb.12563. [18] Zimmermann S, Talke I, Ehrhardt T, Nast G, Müller-Röber B. Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells[J]. Plant Physiology, 1998, 116(3):879-890. doi:10.1104/pp.116.3.879. [19] Shabala S N. Non-invasive microelectrode ion flux measurements in plant stress physiology[M].Springer,Berlin,Heidelberg:Plant Electrophysiology, 2006:35-71. doi:10.1007/978-3-540-37843-3_3. [20] Buschmann P H, Vaidyanathan R, Gassmann W, Schroeder J I. Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells[J]. Plant Physiology, 2000, 122(4):1387-1397. doi:10.1104/pp.122.4.1387. [21] Fuchs I, Stölzle S, Ivashikina N, Hedrich R. Rice K+ uptake channel OsAKT1 is sensitive to salt stress[J]. Planta, 2005, 221(2):212-221. doi:10.1007/s00425-004-1437-9. [22] 冯寒骞.玉米钾离子通道ZMK1的功能及分子调控机制研究[D].北京:中国农业大学, 2015. Fng H Q. Analysis of the function and regulatory mechanism of ZMK1 in Zea Mays[D]. Beijing:China Agricultural University, 2015. [23] Ronzier E, Corratgé-Faillie C, Sanchez F, Prado K, Brière C, Leonhardt N, Thibaud J B, Xiong T C. CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening[J]. Plant Physiology, 2014, 166(1):314-326. doi:10.1104/pp.114.240226. [24] Saito S, Hoshi N, Zulkifli L, Widyastuti S, Goshima S, Dreyer I, Uozumi N. Identification of regions responsible for the function of the plant K+ channels KAT1 and AKT2 in Saccharomyces cerevisiae and Xenopus laevis oocytes[J]. Channels, 2017, 11(6):510-516. doi:10.1080/19336950.2017.1372066. [25] Kelly G, Lugassi N, Belausov E, Wolf D, Khamaisi B, Brandsma D, Kottapalli J, Fidel L, Ben-Zvi B, Eqbaria A, Acheampong A K, Zheng C L, Or E, Distelfeld A, David-Schwartz R, Carmi N, Granot D. The Solanum tuberosum KST1 partial promoter as a tool for guard cell expression in multiple plant species[J]. Journal of Experimental Botany, 2017, 68(11):2885-2897. doi:10.1093/jxb/erx159. [26] Pratelli R, Lacombe B, Torregrosa L, Gaymard F, Romieu C, Thibaud J B, Sentenac H. A grapevine gene encoding a guard cell K+ channel displays developmental regulation in the grapevine berry[J]. Plant Physiology, 2002, 128(2):564-577. doi:10.1104/pp.010529. [27] Zhao L N, Shen L K, Zhang W Z, Zhang W, Wang Y, Wu W H. Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes[J]. Plant Cell, 2013, 25(2):649-661. doi:10.1105/tpc.112.103184. [28] Wang L, Yang S Y, Guo M Y, Huang Y N, Sentenac H, Very A A, Su Y H. The S1-S2 linker determines the distinct pH sensitivity between ZmK2.1 and KAT1[J]. The Plant Journal, 2016, 85(5):675-685. doi:10.1111/tpj.13134. [29] Cuin T A, Dreyer I, Michard E. The Role of potassium channels in Arabidopsis thaliana long distance electrical signalling:AKT2 modulates tissue excitability while GORK shapes action potentials[J]. International Journal of Molecular Sciences, 2018, 19(4):926. doi:10.3390/ijms19040926. [30] Ache P, Becker D, Deeken R, Dreyer I, Weber H, Fromm J, Hedrich R. VFK1, a Vicia faba K+ channel involved in phloem unloading[J]. Plant Journal for Cell & Molecular Biology, 2015, 27(6):571-580. doi:10.1046/j.1365-313X.2001.t01-1-01116.x. [31] Ródenas R, García-Legaz M F, López-Gómez E, Martínez V, Rubio F,Ángeles Botella M.NO3-, PO4-3 and SO42- deprivation reduced LKT1-mediated low-affinity K+ uptake and SKOR-mediated K+ translocation in tomato andArabidopsis plants[J]. Physiologia Plantarum, 2017, 160(4):410-424. doi:10.1111/ppl.12558. [32] Czempinski K, Zimmermann S, Ehrhardt T, Müller-Rüber B. New structure and function in plant K+ channels:KCO1, an outward rectifier with a steep Ca2+ dependency[J]. Embo Journal, 1997, 16(10):2565-2575. doi:10.1093/emboj/16.10.2565. [33] 王程. 大豆耐低钾品种的鉴定及其耐低钾调控基因的功能分析[D]. 南京:南京农业大学, 2012. Wng C. Identification of low potassium tolerance varieties and function analysis of regulated genes on potassium stress in soybean[D]. Nanjing:Nanjing Agricultural University, 2012. [34] Isayenkov S V, Maathuis F J M. The expression of rice vacuolar TPK channels genes restores potassium uptake in E. coli mutant strain LB2003[J]. Cytology and Genetics, 2015, 49(1):1-5. doi:10.3103/s0095452715010053. [35] Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K. Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta[J]. The Plant Journal, 2006, 48(2):296-306. doi:10.1111/j.1365-313X.2006.02868.x. [36] Chen G, Hu Q D, Luo L, Yang T Y, Zhang S, Hu Y B, Yu L, Xu G H. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges[J]. Plant, Cell & Environment, 2015, 38(12):2747-2765. doi:10.1111/pce.12585. [37] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5 的序列特征及表达分析[J]. 作物学报, 2018,44(2):236-244.doi:10.3724/SP.J.1006.2018.00236. Cao M N, Wen Q Y, Zhang Z Y, Hu G H, Zhang J B, Wang G, Wang Q L. Sequence characteristics and expression analysis of potassium transporter gene GhHAK5 in upland cotton(Gossypium hirsutum L.)[J]. Acta Agronomica Sinica,2018,44(2):236-244. [38] Sato Y, Nanatani K, Hamamoto S, Shimizu M, Takahashi M, Tabuchi-Kobayashi M, Mizutani A, Schroeder J I, Souma S, Uozumi N. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter[J]. Journal of Biochemistry, 2014, 155(5):315-323. doi:10.1093/jb/mvu007. [39] Bañuelos M A, Klein R D, Alexander-Bowman S J, Rodriguez-Navarro A. A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the K+ up system of Escherichia coli has a high concentrative capacity[J]. EMBO J,1995, 14(1):3021-3027. doi:10.1002/j.1460-2075.1995.tb07304.x. [40] Quintero F J, Blatt M R. A new family of K+ transporters from Arabidopsis that are conserved across phyla[J]. FEBS Letter, 1997, 415(2):206-211. doi:10.1016/S0014-5793(97)01125-3. [41] Santa-Maria G E, Rubio F, Dubcovsky J, Rodriguez Navarro A. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter[J]. Plant Cell, 1997, 9(12):2281-2289. doi:10.1105/tpc.9.12.2281. [42] Fu H H, Luan S. AtKuP1:a dual-affinity K+ transporter from Arabidopsis[J]. Plant Cell, 1998, 10(1):63-73. doi:10.1105/tpc.10.1.63. [43] Kim E J, Kwak J M, Uozumi N, Schroeder J I. AtKUP1:an Arabidopsis gene encoding high-affinity potassium transport activity[J]. Plant Cell, 1998, 10(1):51-62. doi:10.2307/3870628. [44] Nieves-Cordones M, Lara A, Ródenas R, Amo J, Rivero R M, Martinez V, Rubio F. Modulation of K+ translocation by AKT1 and AtHAK5 in Arabidopsis plants[J]. Plant, Cell & Environment, 2019, 42(8):2357-2371. doi:10.1111/pce.13573. [45] Mäser P, Thomine S, Schroeder J I, Ward J M, Hirschi K, Sze H, Talke I N, Amtmann A, Maathuis F J, Sanders D, Harper J F, Tchieu J, Gribskov M, Persans M W, Salt D E, Kim S A, Guerinot M L. Phylogenetic relationships within cation transporter families of Arabidopsis[J].Plant Physiology, 2001, 126(4):1646-1667. doi:10.2307/4280038. [46] Yang Z F, Gao Q S, Sun C S, Li W J, Gu S L, Xu C W. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2009, 36(3):161-172. doi:10.1016/s1673-8527(08)60103-4. [47] Zhang Z B, Zhang J W, Chen Y J, Li R F, Wang H Z, Wei J H. Genome-wide analysis and identification of HAK potassium transporter gene family in maize(Zea mays L.)[J]. Molecular Biology Reports, 2012, 39(8):8465-8473. doi:10.1007/s11033-012-1700-2. [48] Cheng X Y, Liu X D, Mao W W, Zhang X R, Chen S L, Zhan K H, Bi H H, Xu H X. Genome-wide identification and analysis of HAK/KUP/KT Potassium transporters gene family in wheat (Triticum aestivum L.)[J]. International Journal of Molecular Sciences, 2018, 19(12):3969. doi:10.3390/ijms19123969. [49] Alemán F, Nieves-Conlones M, Martínez V, Rubio F. Root K+ acquisition in plants:the Arabidopsis thaliana model[J]. Plant Cell Physiology, 2011, 52(9):1603-1612. doi:10.1093/pcp/pcr096. [50] Song Z Z, Ma R J, Yu M L. Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica)[J]. Genetics & Molecular Research, 2015, 14(1):774-787. doi:10.4238/2015.January.30.21. [51] Santa-María G E, Oliferuk S, Moriconi J I. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms:A twenty years tale[J]. Journal of Plant Physiology, 2018, 226:77-90. doi:10.1016/j.jplph.2018.04.008. [52] Yang T Y, Zhang S, Hu Y B, Wu F C, Hu Q D, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G H. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels[J]. Plant Physiology, 2014, 166(2):945-959. doi:10.1104/pp.114.246520. [53] Chen D D, Afriyie A J, Li R X, Dominic K, Li L, Li R F, Zhao W G. Molecular cloning of potassium transporter gene, MaHAK5 of mulberry (Morus alba L.) and gene expression and biochemistry analysis under potassium stress[J]. The Journal of Horticultural Science and Biotechnology, 2019, 94(1):130-136. doi:10.1080/14620316.2018.1470909. [54] 郭铭凯. 玉米高亲和钾转运体ZmHAK1的亚细胞定位及其功能研究[D]. 长春:吉林大学, 2018. Go M K. The subcellular localization and function research of high-affinity potassium transporter ZmHAK1 in maize[D].Changchun:Jilin University, 2018. [55] Fu H H, Luan S. AtKuP1:a dual-affinity K+ transporter from Arabidopsis[J]. Plant Cell, 1998, 10(1):63-73. doi:10.1105/tpc.10.1.63. [56] Santa-María G, Rubio F, Dubcovsky J, Rodríguez-Navarro A. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter[J]. Plant Cell, 1997, 9(12):2281-2289. doi:10.1105/tpc.9.12.2281. [57] Ahn S J, Shin R, Schachtman D P. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake[J]. Plant Physiology, 2004, 134(3):1135-1145. doi:10.1104/pp.103.034660. [58] 李瑜, 塔娜, 王倩, 任学敏, 亢燕, 祁智. 拟南芥高亲和性K+转运蛋白AtHAK5功能位点的鉴定[J]. 中国科学:生命科学, 2014, 44(9):929-937. doi:10.1360/n052014-00088. L Y, Ta N, Wang Q, Ren X M, Kang Y, Qi Z. Identification of functional sites of high-affinity HAK5 K+ transporter in Arabidopsis thaliana[J]. Scientia Sinica Vitae, 2014, 44(9):929-937. [59] Qin Y J, Wu W H, Wang Y. ZmHAK5 and ZmHAK1 function in K+ uptake and distribution in maize under low K+ conditions[J]. Journal of Integrative Plant Biology, 2019, 61(6):691-705. doi:10.1111/jipb.12756. [60] Li W H, Xu G H, Alli A, Yu L. Plant HAK/KUP/KT K+ transporters:function and regulation[J]. Seminars in Cell & Developmental Biology, 2018, 74:133-141. doi:10.1016/j.semcdb.2017.07.009. [61] Schachtman D P, Schroeder J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants[J]. Nature, 1994, 370(6491):655-658. doi:10.1038/370655a0. [62] Su Y, Luo W G, Lin W H, Ma L Y, Kabir M H. Model of cation transportation mediated by high-affinity potassium transporters (HKTs) in higher plants[J]. Biological Procedures Online, 2015, 17(1):1. doi:10.1186/s12575-014-0013-3. [63] Wang Q, Guan C, Wang P, Lü M L, Ma Q, Wu G Q, Bao A K, Zhang J L, Wang S M. AtHKT1; 1 and AtHAK5 mediate low-affinity Na+ uptake in Arabidopsis thaliana under mild salt stress[J]. Plant Growth Regulation, 2015, 75(3):615-623. doi:10.1007/s10725-014-9964-2. [64] Suzuki K, Costa A, Nakayama H, Katsuhara M, Shinmyo A, Horie T. OsHKT2; 2/1-mediated Na+ influx over K+ uptake in roots potentially increases toxic Na+ accumulation in a salt-tolerant landrace of rice Nona Bokra upon salinity stress[J]. Journal of Plant Research, 2016, 129(1):67-77. doi:10.1007/s10265-015-0764-1. [65] Wang M, Xia G M. The landscape of molecular mechanisms for salt tolerance in wheat[J]. The Crop Journal, 2018, 6(1):42-47. doi:10.1016/j.cj.2017.09.002. [66] Tada Y, Endo C, Katsuhara M, Horie T, Shibasaka M, Nakahara Y, Kurusu T. High-affinity K+ transporters from a halophyte, Sporobolus virginicus, mediate both K+ and Na+ transport in transgenic Arabidopsis, X. laevis oocytes, and yeast[J]. Plant and Cell Physiology, 2019, 60(1):176-187. doi:10.1093/pcp/pcy202. [67] Chen H T, He H, Yu D Y. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants[J]. Physiol Plant, 2011, 141(1):11-18. doi:10.1111/j.1399-3054.2010.01412.x. [68] Li P, Feng Z Z, Chen Y S, Wang Y, Zhang J X. Research progress of HKT transporter genes in plants[J]. Agricultural Biotechnology, 2016, 5(5):12-15,18. doi:10.19759/j.cnki.2164-4993.2016.05.004. [69] Fu L B, Shen Q F, Kuang L H, Yu J H, Wu D Z, Zhang G P. Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice[J]. Plant Physiology and Biochemistry, 2018, 130:248-257. doi:10.1016/j.plaphy.2018.07.013. [70] Khan I U, Ali A, Yun D J.Arabidopsis NHX transporters:sodium and potassium antiporter mythology and sequestration during ionic stress[J]. Journal of plant biology, 2018, 61(5):292-300. doi:10.1007/s12374-018-0244-y. [71] Yang L, Liu H, Fu S M, Ge H M, Tang R J, Yang Y, Wang H H, Zhang H X. Na+/H+ and K+/H+ antiporters AtNHX1 and AtNHX3 from Arabidopsis improve salt and drought tolerance in transgenic poplar[J]. Biologia Plantarum, 2017, 61(4):641-650. doi:10.1007/s10535-017-0724-9. [72] Wang L G, Wu X X, Liu Y F, Qiu Q S. AtNHX5 and AtNHX6 control cellular K+ and pH homeostasis in Arabidopsis:three conserved acidic residues are essential for K+ transport[J]. PLoS One, 2015, 10(12):e0144716.doi:10.1371/journal.pone.0144716. [73] Tsujii M, Kera K, Hamamoto S, Kuromori T, Shikanai T, Uozumi N. Evidence for potassium transport activity of Arabidopsis KEA1-KEA6[J]. Scientific Reports, 2019, 9(1):10040. doi:10.1038/s41598-019-46463-7. |