[1] 曹小艳, 李志, 张卿, 秦岭, 邢宇. 不同板栗品种(系)抗性淀粉综合评价[J]. 中国粮油学报, 2019, 34(7):39-46. doi:10.3969/j.issn.1003-0174.2019.07.008. Co X Y, Li Z, Zhang Q, Qin L, Xing Y. Comprehensive evaluation of resistant starch in different Chinese chestnut varieties(lines)[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(7):39-46. [2] 梁丽松, 王贵禧. 不同产区板栗病原菌的种类及其致病力研究[J]. 林业科学研究, 2003, 16(3):284-288. doi:10.3321/j.issn:1001-1498.2003.03.006. Lang L S, Wang G X. Studies on the varieties and pathogenic ability of the pathogenic fungi of Chinese chestnut seed in different production areas of China[J]. Forest Research, 2003, 16(3):284-288. [3] 吴小芹, 林树燕, 熊春红, 杨晓春. 贮藏方式对板栗品质及其微生物种类数量消长的影响[J]. 南京林业大学学报(自然科学版), 2001, 25(3):47-51. doi:10.3969/j.issn.1000-2006.2001.03.011. W X Q, Lin S Y, Xiong C H, Yang X C. Effects of different treatments on the quality and the microorganism's kinds and quantities of chestnuts in storage[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2001, 25(3):47-51. [4] 张馨方, 郭燕, 李颖, 张树航, 王广鹏. 板栗内腐病研究进展[J]. 中国植保导刊, 2018, 38(11):25-28, 38. doi:10.3969/j.issn.1672-6820.2018.11.005. Zang X F, Guo Y, Li Y, Zhang S H, Wang G P. Research progress on chestnut seed rot[J]. China Plant Protection, 2018, 38(11):25-28, 38. [5] 戴桂馥,李宗伟, 王雁萍, 王付转, 吴健, 刘建华. 板栗贮藏中的病原菌及其控制[J]. 郑州大学学报(自然科学版), 2001, 33(1):53-57. doi:10.3969/j.issn.1671-6841.2001.01.014. Di G F, Li Z W, Wang Y P, Wang F Z, Wu J, Liu J H. Pathogenetic fungi stored chestnut putrid in China and controlling methods[J]. Journal of Zhengzhou University, 2001, 33(1):53-57. [6] 傅本重, 王立华, 李国元, 徐东生, 王有宁, 章爱群, 邹礼平. 板栗实腐病菌rDNA-ITS的RFLP和测序分析[J]. 经济林研究, 2014, 32(2):9-13, 18. doi:10.14067/j.cnki.1003-8981.2014.02.001. F B Z, Wang L H, Li G Y, Xu D S, Wang Y N, Zhang A Q, Zou L P. RFLP and sequence analysis of rDNA-ITS in Castanea mollissima seed rot pathogens[J]. Nonwood Forest Research, 2014, 32(2):9-13, 18. [7] 易润华, 吴光金. 板栗腐烂机理及防腐保鲜技术的研究[J]. 中南林学院学报, 2000,20(2):44-50. doi:10.14067/j.cnki.1673-923x.2000.02.010. Y R H, Wu G J. Research for the mechanism of Chinese chestnut putridity and the antiseptic and fresh-keeping technique[J]. Journal of Central South Forestry University, 2000, 20(2):44-50. [8] 武燕奇, 郭素娟. 5个板栗品种对干旱胁迫的生理响应及抗旱性评价[J]. 东北林业大学学报, 2017, 45(1):20-24, 29. doi:10.13759/j.cnki.dlxb.2017.01.005. W Y Q, Guo S J. Physiological response of five Chinese chestnut varieties of drought stress and evaluation of drought resistance[J]. Journal of Northeast Forestry University, 2017, 45(1):20-24, 29. [9] 艾呈祥, 余贤美, 张力思, 马玉敏, 苑克俊, 金松南, 刘庆忠. 山东板栗遗传多样性分析[J]. 果树学报, 2006, 23(5):681-684. doi:10.13925/j.cnki.gsxb.2006.05.005. A C X, Yu X M, Zhang L S, Ma Y M, Yuan K J, Jin S N, Liu Q Z. A study of genetic diversity of Castanea mollissima in Shandong[J]. Journal of Fruit Science, 2006, 23(5):681-684. [10] 刘国彬, 曹均, 王金宝, 兰彦平. 明清板栗古树遗传多样性的SSR分析[J]. 林业科学研究[J]. 2016, 29(6):940-945. doi:10.13275/j.cnki.lykxyj.2016.06.021. Lu G B, Cao J, Wang J B, Lan Y P. Genetic diversity analysis of ancient chestnut trees based on fluorescent SSR markers[J]. Forest Research, 2016, 29(6):940-945. [11] Nguyen N H, Song Z, Bates S T, Branco S, Tedersoo L, Menke J, Schilling J S, Kennedy P G. FUNGuild:An open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20(1):241-248.doi:10.1016/j.funeco.2015.06.006. [12] Haas B J, Gevers D, Earl A M, Feldgarden M, Ward D V, Giannoukos G, Ciulla D, Tabbaa D, Highlander S K, Sodergren E, Methé B, DeSantis T Z, The Human Microbiome Consortium, Petrosino J F, Knight R, Birren B W. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome research, 2011, 21(3):494-504. doi:10.1101/gr.112730.110. [13] Edgar R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998. doi:10.1038/nmeth.2604. [14] 刘鹏飞, 红梅, 美丽, 赵巴音那木拉, 德海山, 白雪原, 李志新, 马玺. 玉米秸秆还田量对黑土区农田地面节肢动物群落的影响[J]. 生态学报, 2019, 39(1):235-243. doi:10.5846/stxb201712062198. Lu P F, Hong M, Mei L, Zhao B Y N M L, De H S, Bai X Y, Li Z X, Ma X. Impact of quantity of returned corn straw on the cropland ground arthropod community in a black soil area[J]. Acta Ecologica Sinica, 2019, 39(1):235-243. [15] 董艳辉, 于宇凤, 温鑫, 王亦学, 聂园军, 侯丽媛, 李亚莉, 刘江, 任元, 王育川, 曹秋芬, 吴慎杰, 王斌, 秦永军. 基于高通量测序的藜麦连作根际土壤微生物多样性研究[J]. 华北农学报, 2019, 34(2):205-211. doi:10.7668/hbnxb.201751218. Dng Y H, Yu Y F, Wen X, Wang Y X, Nie Y J, Hou L Y, Li Y L, Liu J, Ren Y, Wang Y C, Cao Q F, Wu S J, Wang B, Qin Y J. Studies on diversity of rhizosphere microorganism in quinoa continuous cropping soil by high throughput sequencing[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(2):205-211. [16] Minchi P R. An evaluation of the relative robustness of techniques for ecological ordination[J]. Theory and Models in Vegetation Science, 1987, 69(1-3):89-107.doi:10.1007/978-94-009-4061-1_9. [17] 张爱梅, 韩雪英, 王嘉, 孔维宝, 牛世全, 朱学泰. 马衔山中国沙棘根瘤内共生细菌多样性研究[J]. 生态学报, 2019, 39(1):294-301. doi:10.5846/stxb201711082004. Zang A M, Han X Y, Wang J, Kong W B, Niu S Q, Zhu X T. Diversity of endophytic bacteria in root nodules of Hippophae rhamnoides in the Maxian Mountains[J]. Acta Ecologica Sinica, 2019, 39(1):294-301. [18] Degnan P H, Ochman H. Illumina-based analysis of microbial community diversity[J]. The ISME Journal, 2012, 6(1):183-194. doi:10.1038/ismej.2011.74. [19] 吴朝晖, 刘清术, 孙继民, 周建群, 李鸿波, 袁隆平. 基于高通量测序的超级稻不同生育期土壤细菌和古菌群落动态变化[J]. 农业现代化研究, 2018, 39(2):342-351. doi:10.13872/j.1000-0275.2018.0010. W Z H, Liu Q S, Sun J M, Zhou J Q, Li H B, Yuan L P. Variations of soil bacterial and archaeal communities during super hybrid rice cultivation based on high throughput sequencing[J]. Research of Agricultural Modernization, 2018, 39(2):342-351. [20] 贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考[J]. 生物多样性, 2013, 21(4):411-420. doi:10.3724/SP.J.1003.2013.10033. H J Z, Li J, Zheng Y M. Thoughts on the microbial diversity-stability relationship in soil ecosystems[J]. Biodiversity Science, 2013, 21(4):411-420. |