| [1] |
FAO. Global status of salt-affected soils[M]. Rome:FAO,2024:240.
|
| [2] |
王遵亲. 中国盐渍土[M]. 北京: 科学出版社,1993:250.
|
|
Wang Z Q. Saline soil of China[M]. Beijing: Science Press,1993:250.
|
| [3] |
Wang Y L, Zeng X Q, Xu Q J, Mei X, Yuan H J, Jiabu D Z, Sang Z, Nyima T. Metabolite profiling in two contrasting Tibetan hulless barley cultivars revealed the core salt-responsive metabolome and key salt-tolerance biomarkers[J]. AoB PLANTS, 2019, 11(2):plz021.doi: 10.1093/aobpla/plz021.
|
| [4] |
Nefissi Ouertani R, Arasappan D, Ruhlman T A, Ben Chikha M, Abid G, Mejri S, Ghorbel A, Jansen R K. Effects of salt stress on transcriptional and physiological responses in barley leaves with contrasting salt tolerance[J]. International Journal of Molecular Sciences, 2022, 23(9):5006.doi: 10.3390/ijms23095006.
URL
|
| [5] |
Xu H W, Halford N G, Guo G M, Chen Z W, Li Y B, Zhou L H, Liu C H, Xu R G. Transcriptomic and metabolomic analyses reveal the importance of lipid metabolism and photosynthesis regulation in high salinity tolerance in barley ( Hordeum vulgare L.) leaves derived from mutagenesis combined with microspore culture[J]. International Journal of Molecular Sciences, 2023, 24(23):16757.doi: 10.3390/ijms242316757.
URL
|
| [6] |
Lai Y, Zhang D Q, Wang J M, Wang J C, Ren P R, Yao L R, Si E J, Kong Y H, Wang H J. Integrative transcriptomic and proteomic analyses of molecular mechanism responding to salt stress during seed germination in hulless barley[J]. International Journal of Molecular Sciences, 2020, 21(1):359.doi: 10.3390/ijms21010359.
URL
|
| [7] |
Shen Q F, Fu L B, Dai F, Jiang L X, Zhang G P, Wu D Z. Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley[J]. BMC Genomics, 2016, 17(1):889.doi: 10.1186/s12864-016-3242-9.
pmid: 27821058
|
| [8] |
Giraldo P, Benavente E, Manzano-Agugliaro F, Gimenez E. Worldwide research trends on wheat and barley:a bibliometric comparative analysis[J]. Agronomy, 2019, 9(7):352.doi: 10.3390/agronomy9070352.
URL
|
| [9] |
刘世森, 杨华, 郭珍珠, 冯世纪, 张述伟, 郭桂梅, 周龙华, 刘成洪, 杜志钊, 陈志伟. 裸大麦地方品种苗期耐盐性筛选和鉴定指标研究[J]. 大麦与谷类科学, 2024, 41 (6):29-36.doi: 10.14069/j.cnki.32-1769/s.2024.06.005.
|
|
Liu S S, Yang H, Guo Z Z, Feng S J, Zhang S W, Guo G M, Zhou L H, Liu C H, Du Z Z, Chen Z W. Screening and identification indices of salt tolerance of hulless barley landraces at seedling stage[J]. Barley and Cereal Sciences, 2024, 41(6):29-36.
|
| [10] |
Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp:an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):i884-i890.doi: 10.1093/bioinformatics/bty560.
|
| [11] |
Kim D, Langmead B, Salzberg S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4):357-360.doi: 10.1038/nmeth.3317.
|
| [12] |
Anders S, Pyl P T, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2):166-169.doi: 10.1093/bioinformatics/btu638.
pmid: 25260700
|
| [13] |
Roberts A, Trapnell C, Donaghey J, Rinn J L, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias[J]. Genome Biology, 2011, 12(3):R22.doi: 10.1186/gb-2011-12-3-r22.
|
| [14] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.doi: 10.1186/s13059-014-0550-8.
URL
|
| [15] |
Consortium T G O. The gene ontology resource:20 years and still GOing strong[J]. Nucleic Acids Research, 2019, 47(D1):D330-D338.doi: 10.1093/nar/gky1055.
|
| [16] |
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research, 2008, 36(S1):D480-D484.doi: 10.1093/nar/gkm882.
|
| [17] |
Kudo T, Sasaki Y, Terashima S, Matsuda-Imai N, Takano T, Saito M, Kanno M, Ozaki S, Suwabe K, Suzuki G, Watanabe M, Matsuoka M, Takayama S, Yano K. Identification of reference genes for quantitative expression analysis using large-scale RNA-seq data of Arabidopsis thaliana and model crop plants[J]. Genes & Genetic Systems, 2016, 91(2):111-125.doi: 10.1266/ggs.15-00065.
|
| [18] |
Chen Z W, Huang J H, Muttucumaru N, Powers S J, Halford N G. Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley[J]. Journal of Cereal Science, 2013, 58(2):255-262.doi: 10.1016/j.jcs.2013.06.009.
pmid: 24748715
|
| [19] |
Chen Z W, Halford N G, Liu C H. Real-time quantitative PCR:primer design,reference gene selection,calculations and statistics[J]. Metabolites, 2023, 13(7):806.doi: 10.3390/metabo13070806.
URL
|
| [20] |
Xue Z L, Wang B S, Qu C Y, Tao M D, Wang Z, Zhang G Q, Zhao M, Zhao S G. Response of salt stress resistance in highland barley ( Hordeum vulgare L.var. nudum)through phenylpropane metabolic pathway[J]. PLoS One, 2023, 18(10):e0286957.doi: 10.1371/journal.pone.0286957.
URL
|
| [21] |
Huang L, Kuang L H, Li X, Wu L Y, Wu D Z, Zhang G P. Metabolomic and transcriptomic analyses reveal the reasons why Hordeum marinum has higher salt tolerance than Hordeum vulgare[J]. Environmental and Experimental Botany, 2018, 156:48-61.doi: 10.1016/j.envexpbot.2018.08.019.
URL
|
| [22] |
Luo J. Metabolite-based genome-wide association studies in plants[J]. Current Opinion in Plant Biology, 2015, 24:31-38.doi: 10.1016/j.pbi.2015.01.006.
pmid: 25637954
|
| [23] |
Upchurch R G. Fatty acid unsaturation,mobilization,and regulation in the response of plants to stress[J]. Biotechnology Letters, 2008, 30(6):967-977.doi: 10.1007/s10529-008-9639-z.
pmid: 18227974
|
| [24] |
Zi X J, Zhou S Y, Wu B Z. Alpha-linolenic acid mediates diverse drought responses in maize ( Zea mays L.) at seedling and flowering stages[J]. Molecules, 2022, 27(3):771.doi: 10.3390/molecules27030771.
URL
|
| [25] |
Qian G T, Wang M Y, Wang X T, Liu K, Li Y, Bu Y Y, Li L X. Integrated transcriptome and metabolome analysis of rice leaves response to high saline alkali stress[J]. International Journal of Molecular Sciences, 2023, 24(4):4062.doi: 10.3390/ijms24044062.
URL
|
| [26] |
Zhou L H, Zong Y J, Li L L, Wu S J, Duan M M, Lu R J, Liu C H, Chen Z W. Integrated analysis of transcriptome and metabolome reveals molecular mechanisms of salt tolerance in seedlings of upland rice Landrace 17SM-19[J]. Frontiers in Plant Science, 2022,13:961445.doi: 10.3389/fpls.2022.961445.
|
| [27] |
Lyu L J, Dong C, Liu Y P, Zhao A J, Zhang Y L, Li H, Chen X Y. Transcription-associated metabolomic profiling reveals the critical role of frost tolerance in wheat[J]. BMC Plant Biology, 2022, 22(1):333.doi: 10.1186/s12870-022-03718-2.
pmid: 35820806
|