[1] |
Li P H, Zheng P P, Zhang T F, Wen G Y, Shao H B, Luo Q P. Fowl adenovirus serotype 4:epidemiology,pathogenesis,diagnostic detection,and vaccine strategies[J]. Poultry Science, 2017, 96(8):2630-2640.doi: 10.3382/ps/pex087.
|
[2] |
Wang K, Sun H W, Li Y Z, Yang Z W, Ye J Q, Chen H J. Characterization and pathogenicity of Fowl adenovirus serotype 4 isolated from Eastern China[J]. BMC Veterinary Research, 2019, 15(1):373.doi: 10.1186/s12917-019-2092-5.
|
[3] |
Wei Z P, Liu H, Diao Y J, Li X D, Zhang S, Gao B, Tang Y, Hu J D, Diao Y X. Pathogenicity of Fowl adenovirus(FAdV) serotype 4 strain SDJN in Taizhou geese[J]. Avian Pathology, 2019, 48(5):477-485.doi: 10.1080/03079457.2019.1625305.
|
[4] |
Xia J, Yao K C, Liu Y Y, You G J, Li S Y, Liu P, Zhao Q, Wen Rui Wu Y P, Huang X B, Cao S J, Han X F, Huang Y. Isolation and molecular characterization of prevalent Fowl adenovirus strains in Southwestern China during 2015-2016 for the development of a control strategy[J]. Emerging Microbes & Infections, 2017, 6(1):1-9.doi: 10.1038/emi.2017.91.
|
[5] |
Yu X L, Wang Z Z, Chen H, Niu X Y, Dou Y G, Yang J, Tang Y, Diao Y X. Serological and pathogenic analyses of Fowl adenovirus serotype 4(FAdV-4)strain in Muscovy ducks[J]. Frontiers in Microbiology, 2018,9:1163.doi: 10.3389/fmicb.2018.01163.
|
[6] |
Kristensen L S, Andersen M S, Stagsted L V W, Ebbesen K K, Hansen T B, Kjems J. The biogenesis,biology and characterization of circular RNAs[J]. Nature Reviews Genetics, 2019, 20(11):675-691.doi: 10.1038/s41576-019-0158-7.
|
[7] |
|
|
Yin Y L, Gu J L. Progress on the mechanisms of circRNA in pathogenic infections[J]. Progress in Veterinary Medicine, 2024, 45(2):111-114.
|
[8] |
Chen L L. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nature Reviews Molecular Cell Biology, 2020, 21(8):475-490.doi: 10.1038/s41580-020-0243-y.
|
[9] |
Wen S Y, Qadir J, Yang B B. Circular RNA translation:novel protein isoforms and clinical significance[J]. Trends in Molecular Medicine, 2022, 28(5):405-420.doi: 10.1016/j.molmed.2022.03.003.
|
[10] |
Yan L C, Chen Y G. Circular RNAs in immune response and viral infection[J]. Trends in Biochemical Sciences, 2020, 45(12):1022-1034.doi: 10.1016/j.tibs.2020.08.006.
|
[11] |
Yin D D, Xue M, Yang K K, Xiong X Q, Geng S, Tu J, Song X J, Shao Y, Wang G J, Qi K Z. Molecular characterization and pathogenicity of highly pathogenic Fowl adenovirus serotype 4 isolated from laying flock with hydropericardium-hepatitis syndrome[J]. Microbial Pathogenesis, 2020,147:104381.doi: 10.1016/j.micpath.2020.104381.
|
[12] |
Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp:an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):i884-i890.doi: 10.1093/bioinformatics/bty560.
|
[13] |
Kim D, Langmead B, Salzberg S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4):357-360.doi: 10.1038/nmeth.3317.
|
[14] |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak S D, Gregersen L H, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338.doi: 10.1038/nature11928.
|
[15] |
Li J H, Liu S, Zhou H, Qu L H, Yang J H. starBase v2.0:decoding miRNA-ceRNA,miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Research, 2014, 42(D1):D92-D97.doi: 10.1093/nar/gkt1248.
|
[16] |
Robinson M D, McCarthy D J, Smyth G K. edgeR:a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1):139-140.doi: 10.1093/bioinformatics/btp616.
|
[17] |
|
|
Xu Z J, Liu W W, Wang G J, Ding C. Research progress in the relationship between circular RNA and viral infection[J]. Chinese Journal of Virology, 2021, 37(6):1508-1514.
|
[18] |
Tan K E, Lim Y Y. Viruses join the circular RNA world[J]. The FEBS Journal, 2021, 288(15):4488-4502.doi: 10.1111/febs.15639.
|
[19] |
Deng J G, Huang Y J, Wang Q, Li J M, Ma Y P, Qi Y, Liu Z Y, Li Y B, Ruan Q. Human cytomegalovirus influences host circRNA transcriptions during productive infection[J]. Virologica Sinica, 2021, 36(2):241-253.doi: 10.1007/s12250-020-00275-6.
|
[20] |
Tagawa T, Gao S J, Koparde V N, Gonzalez M, Spouge J L, Serquiña A P, Lurain K, Ramaswami R, Uldrick T S, Yarchoan R, Ziegelbauer J M. Discovery of Kaposi's sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(50):12805-12810.doi: 10.1073/pnas.1816183115.
|
[21] |
Chen T C, Tallo-Parra M, Cao Q M, Kadener S, Böttcher R, Pérez-Vilaró G, Boonchuen P, Somboonwiwat K, Díez J, Sarnow P. Host-derived circular RNAs display proviral activities in Hepatitis C virus-infected cells[J]. PLoS Pathogens, 2020, 16(8):e1008346.doi: 10.1371/journal.ppat.1008346.
|