[1] 赵团结, 盖钧镒. 栽培大豆起源与演化研究进展[J]. 中国农业科学, 2004, 37(7):954-962. doi:10.3321/j.issn:0578-1752.2004.07.004. Zhao T J, Gai J Y. The origin and evolution of cultivated soybean[J]. Scientia Agricultura Sinica, 2004, 37(7):954-962. doi:10.3321/j.issn:0578-1752.2004.07.004. [2] 郑宇宏, 陈亮, 孟凡凡, 范旭红, 张云峰, 孙星邈, 王明亮, 王曙明. 吉林省不同年代大豆育成品种产量与品质性状变化趋势[J]. 东北农业科学, 2016, 41(6):45-49. doi:10.16423/j.cnki.1003-8701.2016.06.010. Zheng Y H, Chen L, Meng F F, Fan X H, ZhangY F, Sun X M, Wang M L, Wang S M. Changes of yield and quality traits of soybean cultivars released during different stages in Jilin Province[J]. Journal of Northeast Agricultural Sciences, 2016, 41(6):45-49. doi:10.16423/j.cnki.1003-8701.2016.06.010. [3] 张伟, 王曙明, 邱强, 闫晓艳, 彭宝, 张晓霞, 姜海英. 从品种志分析吉林省八十五年来大豆育成品种产量和品质的演变[J]. 大豆科学, 2009, 28(6):970-975. doi:10.11861/j.issn.1000-9841.2009.06.970. Zhang W, Wang S M, Qiu Q, Yan X Y, Peng B, Zhang X X, Jiang H Y. Changes of yield and quality traits of released soybean cultivars during Past 85 Years in Jilin Province[J]. Soybean Science, 2009, 28(6):970-975. doi:10.11861/j.issn.1000-9841.2009.06.970. [4] Hwang E Y, Song Q J, Jia G F, Specht J E, Hyten D L, Costa1 J, Cregan P B. A genome-wide association study of seed protein and oil content in soybean[J]. BMC Genomics 2014, 15:1. doi:10.1186/1471-2164-15-1. [5] Bolon Y T, Joseph B, Cannon S B, Graham M A, Diers B W, Farmer A D, May G D, Muehlbauer G J, Specht J E, Tu Z J, Weeks N, Xu W W, Shoemaker R C, Vance C P. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean[J]. BMC Plant Biology, 2010, 10:41. doi:10.1186/1471-2229-10-41. [6] Kyujung Van, McHale L K. Meta-Analyses of QTLs associated with protein and oil contents and compositions in soybean9(Glycine max (L.) Merr.) seed[J]. International Journal of Molecular Sciences, 2017, 18(6):1180. doi:10.3390/ijms18061180. [7] Patil G, Mian R, Vuong T, Pantalone V, Song Q, Chen P, Shannon G J, Carter T C, Nguyen H T. Molecular mapping and genomics of soybean seed protein:a review and perspective for the future[J]. Theoretical and Applied Genetics, 2017, 130(10):1975-1991. doi:10.1007/s00122-017-2955-8. [8] 魏荷, 王金社, 卢为国. 大豆籽粒蛋白质含量分子遗传研究进展[J]. 中国油料作物学报, 2015, 37(3):394-410. doi:1007-9084.2015.03.021. Wei H, Wang J S, Lu W G. Molecular genetic advances in soybean seed protein[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(3):394-410. doi:1007-9084.2015.03.021. [9] Cober E R, Voldeng H D. Developing high-protein, high-yield soybean populations and lines[J]. Crop Science, 2000, 40(1):39-42. doi:10.2135/cropsci2000.40139x. [10] Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278):178-183. doi:10.1038/nature08670. [11] Phansak P, Soonsuwon W, Hyten D L, Song Q J, Cregan P B, Graef G L, Specht J E.Multi-Population selective genotyping to identify soybean[Glycine max (L.) Merr.] seed protein and oil QTLs[J]. G3 Genesgenetics, 2016, 6:1635-1648. doi:10.1534/g3.116.027656. [12] Nichols D M, Glover K D, Carlson S R, Specht J E, Diers B W. Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits[J]. Crop Science, 2006, 46(2):834-839. doi:10.2135/cropsci2005.05-0168. [13] Chen J Q, Lang C X, Hu Z H. Antisense PEP gene to ratio of protein and lipid content in Brassica napus seeds[J]. Journal of Agricultural Biotechnology, 1999, 7(4):316-320. doi:10.1016/S0140-6736(69)91396-8. [14] Wang H W, Zhang B, Hao Y J, Tian A G, Liao Y, Zhang J S, Chen S Y. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants[J]. The Plant Journal, 2007, 52(4):716-729. doi:10.1111/j.1365-313X.2007.03268.x. [15] Verdier J, Thompson R D. Transcriptional regulation of storage protein synthesis during dicotyledon seed filling[J]. Plant Cell Physiol, 2008, 49(9):1263-1271. doi:10.1093/pcp/pcn116. [16] Ezcurra I, Wycliffe P, Nehlin L, Ellerstrom M, Rask L. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements:B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box[J]. Plant Journal, 2000, 24(1):57-66. doi:10.1046/j.1365-313x.2000.00857.x. [17] 王楠. 谷子与锈菌互作的转录组和表达谱研究及相关基因表达分析[D].石家庄:河北师范大学, 2015. Wang N. The bac library construction and transcriptome analysis of wheat material which carry YR26 gene[D].Shijiazhuang:Hebei Normal University, 2015. [18] Luan H Y, Shen H Q, Zhang Y H, Zang H, Qiao H L, Hong T, Chen J, Chen H. Comparative transcriptome analysis of barley(Hordeum vulgare L.) glossy mutant using RNA-Seq[J]. Brazilian Journal of Botany, 2016, 27(11):1-10. doi:10.1007/s40415-016-0328-1. [19] Wang L, Liu L, Ma Y, Li S, Dong S, Zu W. Transcriptome profilling analysis characterized the gene expression patterns responded to combined drought and heat stresses in soybean[J]. Computation Biology Chemistry, 2018, 77:413-429. doi:10.1016/j.compbiolchem.2018.09.012. [20] Wang Q Q, Liu F, Chen X S, Ma X J, Zeng H Q, Yang Z M. Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant[J]. Genomics, 2010, 96(6):369-376. doi:10.1016/j.ygeno.2010.08.009. [21] 和小燕, 胡晓锋, 王允, 张幸果, 李贺敏, 崔党群, 殷冬梅. 花生籽仁不同发育时期的转录组测序分析[J]. 分子植物育种, 2016, 14(11):2930-2943. He X Y, Hu X F, Wang Y, Zhang X G, Li H M, Cui D Q, Yin D M. Sequencing analysis of transcriptome during the different developmental stages in peanut seed[J]. Molecular Plant Breeding, 2016, 14(11):2930-2943. [22] Julio V, Enrique I, Beatriz J,Martínez O, Vielle-Calzada J P, Herrera-Estrella L, Herrera-Estrella A. Deep sampling of the palomero maize transcriptome by a high throughput strategy of pyrosequencing[J]. BMC Genomics, 2009, 10(1):1-10. doi:10.1186/1471-2164-10-299. [23] Alagna F, D'Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano M L, Baldoni L, Perrotta G. Comparative 454 pyrosequencing of transcriptsfrom two olive genotypes during fruit development[J]. BMC Genomics, 2009, 10(1):399-414. doi:10.1186/1471-2164-10-399. [24] 栾海业, 臧慧, 沈会权,张英虎,乔海龙,陶红,申玉香. 大麦白化颖壳突变体的转录组学分析[J]. 核农学报, 2017, 31(12):2332-2339. Luan H Y, Zang H, Shen H Q, Zhang Y H, Qiao H L, Tao H, Shen Y X. Transcriptome analysis of albino lemma mutant in barley[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(12):2332-2339. [25] 陈静. 花生种子休眠解除过程中相关基因转录组学研究[D].南京:南京农业大学,2004. Chen J. Analysis on transcriptome of genes involved in peanut seed dormancy release[D].Nanjing:Nanjing Agricultural University, 2004. [26] 李海燕, 王芳, 段玉玺, 陈立杰. 大豆胞囊线虫侵染诱导五寨黑豆早期的转录组分析[J]. 中国油料作物学报, 2015, 37(2):194-200. doi:10.7505/j.issn.1007-9084.2015.02.011. Li H Y, Wang F, Duan Y X, Chen L J. Transcriptome analysis of Wuzhai heidou infected by Heterodera glycine[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(2):194-200. doi:10.7505/j.issn.1007-9084.2015.02.011. [27] 黄启秀, 曲延英, 姚正培,李梦雨,陈全家. 海岛棉枯萎病抗性与类黄酮代谢途径基因表达量的相关性[J]. 作物学报, 2017, 43(12):1791-1801. doi:10.3724/SP.J.1006.2017.01791. Huang Q X,Qu Y Y, Yao Z P, Li M Y, Chen Q J. Correlation between resistance to Fusarium wilt and expression of flavonoid metabolism related genes in Gossypium barbadense L.[J].Acta Agronimica Sinica,2017, 43(12):1791-1801. doi:10.3724/SP.J.1006.2017.01791. [28] Cohen S P, Liu H, Argueso C T, Pereira A, Vera Cruz C, Verdier V, Leach J E. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature[J]. PLoS One, 2017,12(11):e0187625. doi:10.1371/journal.pone.0187625. [29] 李永辉, 陈琳琳, 孙炳剑, 王利民,邢小萍,袁虹霞,丁胜利,李洪连. 假禾谷镰孢侵染小麦后3种植物激素相关基因的差异表达分析[J]. 作物学报, 2017, 43(11):1632-1642. doi:10.3724/SP.J.1006.2017.01632. Li Y H, Chen L L, Sun B J, Wang L M, Xing X P, Yuan H X, Ding S L, Li H L. Differential expression of three plant hormone related genes in wheat in-fected by Fusarium pseudograminearum[J]. Acta Agronmica Sinica,2017, 43(11):1632-1642. doi:10.3724/SP.J.1006.2017.01632. [30] 曾庆东. 小麦抗条锈病基因Yr26 载体材料BAC文库构建及转录组测序[D].杨凌:西北农林科技大学,2016. Zeng Q D. The BAC library construction and transcriptome analysis of wheat material which carry Yr26 gene[J].Yangling:North West Agriculture and Forestry University,2016. [31] 许家磊. 基于甘薯徐781和徐薯18转录组测序的SNP标记开发[D]. 北京:中国农业科学院, 2015. doi:10.7666/d.Y2787474. Xu J L. SNP marker development based on sequencing of sweet potato Xu 781 and Xushu 18 transcriptome[D]. Beijing:China Academic Journal Electronic Publishing House, 2015.doi:10.7666/d.Y2787474. [32] 任梦露, 刘卫国, 刘婷, 杜勇利, 邓榆川, 邹俊林, 袁晋, 杨文钰. 荫蔽胁迫下大豆茎秆形态建成的转录组分析[J]. 作物学报, 2016, 42(9):1319-1331. doi:10.3724/SP.J.1006.2016.01319. Ren M L, Liu W G, Liu T, Du Y L, Deng Y C, Zou J L, Yuan J, Yang W Y. Transcriptome analysis of stem morphogenesis under shade stress in soybean[J]. Acta Agtonomica Sinica, 2016, 42(9):1319-1331.doi:10.3724/SP.J.1006.2016.01319. [33] 孙爱清, 张杰道, 万勇善, 刘风珍, 张昆, 孙利. 花生干旱胁迫响应基因的数字表达谱分析[J]. 作物学报, 2013, 39(6):1045-1053. doi:10.3724/SP.J.1006.2013.01045. Sun A Q, Sun J D, Wan Y S, Liu F Z, Zhang K, Sun L. In silico expression profile of genes in response todrought in peanut[J]. Acta Agronomica Sinica, 2016, 39(6):1045-1053. doi:10.3724/SP.J.1006.2013.01045. [34] Mortazavi A, Williams B A, Mccue K, Schaeffer L, Wold W. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7):621-628. doi:10.1038/nmeth.1226. [35] Audic S, Claverie J M. The significance of digital gene expression profiles[J]. Genome Research, 1997, 7(10):986-995. doi:10.1101/gr.7.10.986. [36] 陈欢. 大豆籽粒不同发育时期基因表达谱的研究[D]. 长春:吉林农业大学, 2012. Chen H. Gene expression profile of developing soybean seed[D]. Changchun:Jilin Agricultural University, 2012. [37] 杜若琛. 大豆籽粒发育过程中ABI3-like与贮藏蛋白基因的关系及调控机制的研究[D].晋中:山西农业大学,2016. Du R C. Study on the relationship between ABI3-like and storage protein genes during the development of soybean seeds and its regulation mechanism[D]. Jinzhong:Shanxi Agricultural University, 2016. [38] Fuji K, Shimada T, Takahashi H, Tamura K, Koumoto Y, Utsumi S, Nishizawa K, Maruyama N, Hara-Nishimura I. Arabidopsis vacuolar sorting mutants(green fluorescent seed) can be identified efficiently by secretion of vacuole-targeted green fluorescent protein in their seeds[J]. Plant Cell, 2007, 19(2):597-609. doi:10.1105/tpc.106.045997. [39] 韩宝达, 李立新. 植物种子贮藏蛋白质及其细胞内转运与加工[J]. 植物学报, 2010, 45(4):492-505. doi:10.3969/j.issn.1674-3466.2010.04.013. Han B D, Li L X. Seed storage proteins and their intracellular transport and processing[J]. Chinese Bulletin of Botany, 2010, 45(4):492-505.doi:10.3969/j.issn.1674-3466.2010.04.013. [40] 张宁, 姜晶. 植物中小分子热激蛋白基因家族(sHSPs)研究进展[J]. 植物生理学报, 2017(6):943-948. doi:CNKI:SUN:ZWSL.0.2017-06-006. Zhang N, Jiang J. Research advances of small heat shock protein gene family (sHSPs) in plants[J]. Plant Physiology Journal, 2017, 53(6):943-948. doi:CNKI:SUN:ZWSL.0.2017-06-006. [41] 王义菊. 过量表达小分子热激蛋白对番茄耐热性的影响[D]. 济南:山东师范大学, 2005. Wang Y J. The effects of overexpression of small shock proteins on the thermotolerence in tomato[D]. Jinan:Shandong Normal University, 2005. [42] Molinari M. N-glycan structure dictates extension of protein folding or onset of disposal[J]. Nature Chemical Biology, 2007, 3(6):313-320. doi:10.1038/nchembio880. [43] Soldà T, Galli C, Kaufman R J, Molinari M. Substrate-specific requirements for UGT1-dependent release from calnexin[J]. Molecular Cell, 2007, 27(2):238-249. doi:10.1016/j.molcel.2007.05.032. [44] Hebert D N, Foellmer B, Helenius A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum[J]. Cell, 1995, 81(3):425-433. doi:10.1016/0092-8674(95)90395-x. [45] Hirsch C, Gauss R, Horn S C, Neuber O, Sommer T. The ubiquitylation machinery of the endoplasmic reticulum[J]. Nature, 2009, 458(7237):453-460. doi:10.1038/nature07962. [46] Gurkan C, Stagg S M, Lapointe P, Balch W E. The COPⅡ cage:unifying principles of vesicle coat assembly[J]. Nature Reviews Molecular Cell Biology, 2006, 7(10):727-738. doi:10.1038/nrm2025. [47] Younger J M, Chen L, Ren H Y, Rosser M F, Turnbull E L, Fan C Y, Patterson C, Cyr D M. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator[J]. Cell, 2006, 126(3):571-582. doi:10.1016/j.cell.2006.06.041. [48] 吴迪. 内质网中FKBP23与BiP结合后对BiP的ATPase酶活性的影响[D]. 天津:南开大学, 2005. doi:10.7666/d.y804786. Wu D. Effect of binding of FKBP23 to BiP on ATPase activity of BiP in endoplasmic reticulum[D].Tianjin:Nankai University, 2005. doi:10.7666/d.y804786. [49] Li P S, Yu T F, He G H, Chen M, Zhou Y B, Chai S H, Xu Z S, Ma Y Z. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf34 involvement in drought and heat stresses[D].BMC Genomics, 2014,15(1):1-16. doi:10.1186/1471-2164-15-1009. [50] Chauhan H, Khurana N, Agarwal P, Khurana J P, Khurana P. A seeds preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment[J]. PloS One, 2013, 8(11):e79577. doi:10.1371/journal.pone.0079577. |