[1] Jeong J, Choi G. Phytochrome-interacting factors have both shared and distinct biological roles[J]. Molecules and Cells, 2013, 35(5):371-380. doi:10.1007/s10059-013-0135-5. [2] Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell, 2003, 15(8):1749-1770. doi:10.1105/tpc.013839. [3] Leivar P, Quail P H. PIFs:Pivotal components in a cellular signaling hub[J]. Trends in Plant Science, 2011, 16(1):19-28. doi:10.1016/j.tplants.2010.08.003. [4] Ni M, Tepperman J M, Quail P H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein[J]. Cell, 1998, 95(5):657-667. doi:10.1016/S0092-8674(00)81636-0. [5] Huq E, Quail P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis[J]. The EMBO Journal, 2002, 21(10):2441-2450. doi:10.1093/emboj/21.10.2441. [6] Quail P H. Phytochrome-interacting factors[J]. Seminars in Cell and Developmental Biology, 2000, 11(6):457-466. doi:10.1006/scdb.2000.0199. [7] Zhang Y, Mayba O, Pfeiffer A, Shi H, Tepperman J M, Speed T, Quail P H. A Quartet of PIF bHLH Factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis[J].Plos Genetics, 2013,9(1):e1003244. doi:10.1371/journal.pgen.1003244. [8] Liu X, Chen C Y, Wang K C,Luo M, Tai R, Yuan L, Zhao M, Yang S, Tian G, Cui Y, Hsieh H L, Wu K. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings[J]. Plant Cell, 2013, 25(4):1258-1273. doi:10.1105/tpc.113.109710. [9] Park E, Kim J, Lee Y, Shin J, Oh E, Chung W, Liu J R, Choi G. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling[J]. Plant & Cell Physiology, 2004, 45(8):968-975. doi:10.1093/pcp/pch125. [10] Al-Sady B, Ni W M, Kircher S, Kircher S, Sch? fer E, Quail P H. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation[J]. Molecular Cell, 2006, 23(3):439-446. doi:10.1016/j.molcel.2006.06.011. [11] Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung W I, Choi G. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis[J]. Plant Journal, 2006, 47(1):124-139. doi:10.1111/j.1365-313x.2006.02773.x. [12] Shen Y, Khanna R, Carle C M, Quail P H. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation[J]. Plant Physiology, 2007, 145(3):1043-1051. doi:10.1104/pp.107.105601. [13] Ni W, Xu S L, Chalkley R J, Pham T N D, Guan S H, Maltby D A, Burlingame A L, Wang Z Y, Quail P H.Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis[J]. Plant Cell, 2013, 25(7):2679-2698. doi:10.1105/tpc.113.112342. [14] Proveniers M C G, Zanten M V. High temperature acclimation through PIF4 signaling[J]. Trends in Plant Science, 2013, 18(2):59-64. doi:10.1016/j. tplants.2012.09.002. [15] de Lucas M, Prat S. PIFs get BRright:PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals[J]. New Phytologist, 2014, 202(4):1126-1141. doi:10.1111/nph.12725. [16] Lucas M D, Salomé P. PIFs get BRright:PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals[J]. New Phytologist, 2014, 202(4):1126-1141. doi:10.1111/nph.12725. [17] Sun J Q, Qi L L, Li Y N, Zhai Q Z, Li C Y. PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis[J]. Plant Cell, 2013, 25(6):2102-2114. doi:10.1105/tpc. 113.112417. [18] Oh E, Zhu J Y, Wang Z Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses[J]. Nature Cell Biology, 2012, 14(8):802-809. doi:10.1038/ncb2545. [19] Nieto C, López-Salmerón V, Davière J M, Prat S. ELF3-PIF4 interaction regulates plant growth independently of the evening complex[J]. Current Biology, 2015, 25(1):187-193. doi:10.1016/j.cub. 2014. 10.070. [20] Huq E, Quail P H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis[J]. Embo Journal, 2014, 21(10):2441-2450. doi:10.1093/emboj/21. 10.2441. [21] Gangappa S N, Kumar S V. DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms[J]. Cell Reports, 2017, 18(2):344-351. doi:10.1016/j.celrep.2016.12.046. [22] Feng Y L, Zhao Y Y, Wang K T, Li Y C, Wang X, Yin J. Identification of vernalization responsive genes in the winter wheat cultivar Jing841 by transcriptome sequencing.[J]. Journal of Genetics, 2016, 95(4):957-964. doi:10.1007/s12041-016-0724-0. [23] Niwa Y,Yamashino T,Mizuno T. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana[J]. Plant and Cell Physiology,2009, 50(4):838-854. doi:10.1093/pcp/pcp028. [24] Shin J, Anwer M U, Davis S J. Phytochrome-interacting factors (PIFs) as bridges between environmental signals and the circadian clock:diurnal regulation of growth and development[J]. Molecular Plant, 2013, 6(3):592-595. doi:10.1093/mp/sst060. [25] Hanano S, Stracke R, Jakoby M, Merkle T, Domagalska M A, Weisshaar B, Davis S J. A systematic survey in Arabidopsis thaliana of transcription factors that modulate circadian parameters[J]. BMC Genomics, 2008, 9:182. doi:10.1186/1471-2164-9-182. [26] Jeong J, Choi G. Phytochrome-interacting factors have both shared and distinct biological roles[J]. Molecules and Cells, 2013, 35(5):371-380. doi:10.1007/s10059-013-0135-5. [27] Bu Q Y, Zhu L, Huq E. Multiple kinases promote light-induced degradation of PIF1[J]. Plant Signaling and Behavior,2011,6(8):1119-1121. doi:10.4161/psb.6.8.16049. [28] Ni W M, Xu S L, Chalkley R J, Pham T N D, Guan S H, Maltby D A, Burlingame A L, Wang Z Y, Quail P H. Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis[J]. Plant Cell, 2013, 25(7):2679-2698. doi:10.1105/tpc.113.112342. [29] Leivar P, Monte E, Oka Y, Liu T, Carle C, Castillon A, Huq E, Quail P H. Multiple phytochrome-interacting bhlh transcription factors repress premature seedling photomorphogenesis in darkness[J]. Current Biology, 2008, 18(23):1815-1823. doi:10.1016/j.cub.2008.10.058. [30] Shi H, Zhong S W, Mo X R, Liu N, Nezames C D, Deng X W. Hfr1 sequesters pif1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis[J]. Plant Cell, 2013, 25(10):3770-3784. doi:10.1105/tpc.113.117424. [31] Seo J S, Joo J, Kim M J, Kim Y K, Nahm B H, Song S I, Cheong J J, Lee J S, Kim J K, Choi Y D. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. Plant Journal, 201l, 65(6):907-921. doi:10.1111/j.1365-313 X.2010.04477.x. [32] Li F, Guo S Y, Zhao Y, Chen D Z, Chong K, Xu Y Y. Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2010, 29(9):977-986. doi:10.1007/s00299-010-0883-z. |