[1] Carbonell F B, Barrachina A C, Roig A V, et al. Effects of irrigation water quality on loquat plant nutrition:Sensitivity of loquat plant to salinity[J]. Journal of Plant Nutrition, 1997, 20(1):119-130.
[2] 罗华建,刘星辉.水分胁迫条件下枇杷若干生理指标的变化[J].亚热带植物科学, 2004, 33(1):19-21, 25.
[3] Stellfeldt A, Hueso J J, Cuevas J. No need for further fruit thinning in water-deprived loquat trees at preharvest[J]. Scientia Horticulturae, 2013, 162(3):144-149.
[4] Ashraf M. Inducing drought tolerance in plants:recent advances[J]. Biotechnology Advances, 2009, 28(1):169-183.
[5] 杨再强,谢以萍,张旭东,等.水分胁迫对枇杷果实发育阶段的光合特性和果实品质的影响[J].灌溉排水学报, 2007, 6(26):89-92.
[6] Fernández M D, Hueso J J, Cuevas J. Water stress integral for successful modification of flowering dates in Algerie loquat[J]. Irrigation Science, 2010, 28(2):127-134.
[7] Hueso J J, Cuevas J. Loquat as a crop model for successful deficit irrigation[J]. Irrigation Science, 2008, 26(3):269-276.
[8] Yang Y, Xu M, Luo Q, et al. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing[J]. Gene, 2013, 534(2):155-162.
[9] 贾新平,孙晓波,邓衍明,等.鸟巢蕨转录组高通量测序及分析[J].园艺学报, 2014, 41(11):2329-2341.
[10] Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray[J]. The Plant Journal:for Cell and Molecular Biology, 2002, 31(3):279-292.
[11] Rabbani M, Maruyama K, Abe H, et al. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses[J]. Plant Physiology, 2003, 133(4):1755-1767.
[12] Priest H D, Fox S E, Rowley E R, et al. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress[J]. PLoS One, 2014, 9(1):e87499.
[13] 王洁.干旱胁迫马铃薯叶片转录组分析[D].兰州:甘肃农业大学, 2014.
[14] Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7):644-652.
[15] Hayano-Kanashiro C, Calderón-Vázquez C, Ibarra-Laclette E, et al. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation[J]. PLoS One, 2009, 4(10):69.
[16] 宋杨,刘红弟,张红军,等.越橘果实转录组及R2R3-MYB转录因子分析[J].园艺学报, 2015, 42(12):2383-2394.
[17] 费元,韩雪,余红,等.大岩桐花萼和幼叶转录组研究[J].园艺学报, 2015, 42(12):2519-2525.
[18] 麻文俊.楸树优良无性系2-8苗期生理变化与基因表达对干旱胁迫的响应[D].北京:中国林业科学研究院, 2013.
[19] Wu Y, Wei W, Pang X, et al. Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthusmongolicus, in response to drought and cold stresses[J]. BMC Genomics, 2014,15(1):1-16.
[20] Lata C, Sahu P P, Prasad M. Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochemical and Biophysical Research Communications[J],2010,393(4):720-727.
[21] 蔡国华.玉米促分裂原活化蛋白激酶激酶基因ZmMKK1的分离及功能分析[D].泰安:山东农业大学, 2014.
[22] Li J, Tax F. Receptor-like kinases:key regulators of plant development and defense[J]. Journal of Integrative Plant Biology, 2013, 55(12):1184-1187.
[23] Hassan N, El-Bastawisy Z, El-Sayed A K, et al. Roles of dehydrin genes in wheat tolerance to drought stress[J]. Journal of Advanced Research, 2013, 6(2):179-188.
[24] Zhang G, Chen M, Li L, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco[J]. Journal of Experimental Botany,2008,60(13):3781-3796.
[25] Li J S, Fu F L, An M, et al. Differential expression of MicroRNAs in response to drought stress in maize[J]. Journal of Integrative Agriculture, 2013, 12(8):1414-1422.
[26] Kumar V, Malik S K, Pal D, et al. Comparative transcriptome analysis of ovules reveals stress related genes associated with nucellar polyembryony in citrus[J]. Tree Genetics & Genomes, 2014, 10(3):449-464.
[27] Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica acta, 2012, 1819(2):120-128.
[28] 巩檑,张丽,聂峰杰,等.干旱胁迫和复水处理后马铃薯转录因子的转录组分析[J].分子植物育种, 2015, 13(8):1745-1756.
[29] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism[J]. Annual Review of Plant Biology, 2005,56(56):165-185.
[30] 黄彬城,季静,王罡,等.植物类胡萝卜素的研究进展[J].天津农业科学, 2006, 12(2):13-17.
[31] Umezawa T, Okamoto M, Kushiro T, et al. CYP707A3, a major ABA 8'-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana[J].Plant Journal,2006, 46(2):171-182.
[32] Okamoto M, Kuwahara A, Seo M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8'-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis[J]. Plant Physiology, 2006, 141(1):97-107.
[33] 裴帅帅.干旱胁迫对谷子生理特性的影响及赤霉素代谢关键酶基因表达分析[D].晋中:山西农业大学, 2014.
[34] Divi U K, Krishna P. Overexpression of the brassinosterid biosynthetic gene AtDWF4 in Arabidopsis and increases cold tolerance in transgenic seedlings[J]. Plant Growth Reg,2010,29(4):385-393.
[35] 杨作仁.棉花T-DNA激活标签突变体pag1分子机制的研究与应用[D].北京:中国农业科学院,2014. |