[1] Yusuff O, Rafii M Y, Chukwu S C, Fatai A, Usman M G, Isiaka K, Kamarudin Z F, Muhammad I, Kolapo K. Drought resistance in rice from conventional to molecular breeding:a review[J]. International Journal of Molecular Sciences, 2019, 20(14):3519.doi:10.3390/ijms20143519. [2] Bailey-Serres J, Parker J E, Ainsworth E A, Oldroyd G E D, Schroeder J I. Genetic strategies for improving crop yields[J]. Nature, 2019, 575(7781):109-118.doi:10.1038/s41586-019-1679-0. [3] Ermakova M, Danila F R, Furbank R T, von Caemmerer S. On the road to C4 rice:advances and perspectives[J]. The Plant Journal, 2020, 101(4):940-950.doi:10.1111/tpj.14562. [4] Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase:a new era of structural biology[J]. Annual Review of Plant Biology, 2004, 55:69-84.doi:10.1146/annurev.arplant.55.031903.141619. [5] Liu X L, Li X, Dai C C, Zhou J Y, Yan T, Zhang J F.Improved short-term drought response of transgenic rice over-expressing maize C4 phosphoenolpyruvate carboxylase via calcium signal cascade[J]. Journal of Plant Physiology, 2017, 218:206-221.doi:10.1016/j.jplph.2017.08.005. [6] Liu X L, Li X, Zhang C, Dai C C, Zhou J Y, Ren C G, Zhang J F. Phosphoenolpyruvate carboxylase regulation in C4-PEPC-expressing transgenic rice during early responses to drought stress[J]. Physiologia Plantarum, 2017, 159(2):178-200.doi:10.1111/ppl.12506. [7] Huo K, Li X, He Y F, Wei X D, Lu W, Zhao C F, Wang C L. Exogenous ATP enhance signal response of suspension cells of transgenic rice(Oryza sativa L.) expressing maize C4-pepc encoded phosphoenolpyruvate carboxylase under PEG treatment[J]. Plant Growth Regulation, 2017, 82(1):55-67.doi:10.1007/s10725-016-0238-z. [8] 唐玉婷, 李霞, 陆巍, 魏晓东.高表达转C4型PEPC基因水稻在低氮下诱导碳氮酶稳定光合作用[J]. 华北农学报, 2015, 30(4):95-100.doi:10.7668/hbnxb.2015.04.017. Tang Y T, Li X, Lu W, Wei X D. Transgenic rice with high expression of C4-PEPC genes induced higher carbon and nitrogen key enzyme to maintain photosynthesis under low nitrogen conditions[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(4):95-100. [9] 严婷, 李佳馨, 李霞, 谢寅峰. 转C4型PEPC基因水稻非生物胁迫耐受性研究进展[J]. 淮阴工学院学报, 2019, 28(5):62-68.doi:10.3969/j.issn.1009-7961.2019.05.012. Yan T, Li J X, Li X, Xie Y F. Research progress on abiotic stress tolerance of transgenic rice with C4-PEPC gene[J]. Journal of Huaiyin Institute of Technology, 2019, 28(5):62-68. [10] 杜康兮, 沈文辉, 董爱武. 表观遗传调控植物响应非生物胁迫的研究进展[J]. 植物学报, 2018, 53(5):581-593.doi:10.11983/CBB17143. Du K X, Shen W H, Dong A W. Advances in epigenetic regulation of abiotic stress response in plants[J]. Bulletin of Botany, 2018, 53(5):581-593. [11] Karim R, Nuruzzaman M, Khalid N, Harikrishna J A. Importance of DNA and histone methylation in in vitro plant propagation for crop improvement:a review[J]. Annals of Applied Biology, 2016, 169(1):1-16.doi:10.1111/aab.12280. [12] Li X Y, Wang X F, He K, Ma Y Q, Su N, He H, Stolc V, Tongprasit W, Jin W W, Jiang J M, Terzaghi W, Li S G, Deng X W. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression[J]. The Plant Cell, 2008, 20(2):259-276.doi:10.1105/tpc.107.056879. [13] Zhang Q, Liang Z, Cui X A, Ji C M, Li Y, Zhang P X, Liu J R, Riaz A, Yao P, Liu M, Wang Y P, Lu T G, Yu H, Yang D L, Zheng H K, Gu X F.N6-Methyladenine DNA methylation in Japonica and Indica rice genomes, and its association with gene expression, plant development and stress responses[J]. Molecular Plant, 2018, 11(12):1492-1508.doi:10.1016/j.molp.2018.11.005. [14] Ku M S, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants[J]. Nature Biotechnology, 1999, 17(1):76-80.doi:10.1038/5256. [15] Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory manual for physiological studies of rice[M]. Philippines:The International Rice Research Institute, 1976. [16] Li X, Wang C, Ren C G. Effects of 1-butanol, neomycin, and calcium on the photosynthetic characteristics of pepc transgenic rice[J]. African Journal of Biotechnology, 2011, 10(76):17466-17476.doi:10.5897/AJB10.1565. [17] Smart R E, Bingham G E. Rapid estimates of relative water content[J]. Plant Physiology, 1974, 53(2):258-260.doi:10.1104/pp.53.2.258. [18] Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants:protective role of exogenous polyamines[J]. Plant Science, 2000, 151(1):59-66.doi:10.1016/S0168-9452(99) 00197-1. [19] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2):248-254.doi:10.1006/abio.1976.9999. [20] Troll W, Lindsley J. A photometric method for the determination of proline[J]. Journal of Biological Chemistry, 1955, 215(2):655-660.doi:10.1016/S0021-9258(18) 65988-5. [21] Ambavaram M M R, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Baisakh N, Pereira A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress[J]. Nature Communications, 2014, 5:5302.doi:10.1038/ncomms6302. [22] 张金飞, 李霞, 谢寅峰. 植物SnRKs家族在胁迫信号通路中的调节作用[J]. 植物学报, 2017, 52(3):346-357.doi:10.11983/CBB16095. Zhang J F, Li X, Xie Y F. The function of sucrose nonfermenting-1 related protein kinases in stress signaling[J]. Bulletin of Botany, 2017, 52(3):346-357. [23] Horacio P, Martinez-Noel G. Sucrose signaling in plants:A world yet to be explored[J]. Plant Signaling & Behavior, 2013, 8(3):e23316.doi:10.4161/psb.23316. [24] Lindroth A M, Cao X F, Jackson J P, Zilberman D, McCallum C M, Henikoff S, Jacobsen S E. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation[J]. Science, 2001, 292(5524):2077-2080.doi:10.1126/science.1059745. [25] Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, Terada R, Nakamura I, Iida S. Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice[J]. The Plant Journal, 2009, 60(2):386-396.doi:10.1111/j.1365-313X.2009.03947.x. [26] Yamauchi T, Moritoh S, Johzuka-Hisatomi Y, Ono A, Terada R, Nakamura I, Iida S. Alternative splicing of the rice OsMET1 genes encoding maintenance DNA methyltransferase[J]. Journal of Plant Physiology, 2008, 165(17):1774-1782.doi:10.1016/j.jplph.2007.12.003. [27] 袁超, 张少伟, 牛义, 汤青林, 魏大勇, 王志敏. 植物DNA甲基化作用机制的研究进展[J]. 生物工程学报, 2020, 36(5):838-848.doi:10.13345/j.cjb.190373. Yuan C, Zhang S W, Niu Y, Tang Q L, Wei D Y, Wang Z M. Advances in research on the mechanism of DNA methylation in plants[J]. Chinese Journal of Biotechnology, 2020, 36(5):838-848. [28] Akimoto K, Katakami H, Kim H J, Ogawa E, Sano C M, Wada Y, Sano H. Epigenetic inheritance in rice plants[J]. Annals of Botany, 2007, 100(2):205-217.doi:10.1093/aob/mcm110. [29] Zemach A, Kim M Y, Silva P, Rodrigues J A, Dotson B, Brooks M D, Zilberman D. Local DNA hypomethylation activates genes in rice endosperm[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(43):18729-18734.doi:10.1073/pnas.1009695107. [30] 何平, 疏冕, 蔡晓丹, 傅雪琳.栽培稻×药用野生稻种间杂种基因组DNA甲基化的遗传与变异研究[J]. 华北农学报, 2017, 32(4):19-31.doi:10.7668/hbnxb.2017.04.004. He P, Shu M, Cai X D, Fu X L. Inheritance and variations of DNA methylation in interspecific hybrid F1 between O.sativa and O.officinalis[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(4):19-31. [31] Zhang H M, Lang Z B, Zhu J K. Dynamics and function of DNA methylation in plants[J]. Nature Reviews Molecular Cell Biology, 2018, 19(8):489-506.doi:10.1038/s41580-018-0016-z. [32] 张小丽, 刘敏, 商奇, 葛才林.水稻叶片中活性甲基循环、转移相关基因对干旱胁迫的应答[J]. 中国水稻科学, 2011, 25(3):236-242.doi:10.3969/j.issn.1001-7216.2011.03.002. Zhang X L, Liu M, Shang Q, Ge C L. Responses of active methyl cycle and transfer genes to drought stress in rice leaves[J]. Chinese Journal of Rice Science, 2011, 25(3):236-242. [33] 潘雅姣, 傅彬英, 王迪, 朱苓华, 黎志康. 水稻干旱胁迫诱导DNA甲基化时空变化特征分析[J]. 中国农业科学, 2009, 42(9):3009-3018.doi:10.3864/j.issn.0578-1752.2009.09.001. Pan Y J, Fu B Y, Wang D, Zhu L H, Li Z K. Spatial and temporal profiling of DNA methylation induced by drought stress in rice[J]. Scientia Agricultura Sinica, 2009, 42(9):3009-3018. [34] Wang W S, Pan Y J, Zhao X Q, Dwivedi D, Zhu L H, Ali J, Fu B Y, Li Z K. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.) [J]. Journal of Experimental Botany, 2011, 62(6):1951-1960.doi:10.1093/jxb/erq391. [35] Friedman S.The inhibition of DNA (cytosine-5) methylases by 5-azacytidine.The effect of azacytosine-containing DNA[J]. Molecular Pharmacology, 1981, 19(2):314-320. [36] O'Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase):recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs[J]. The Biochemical Journal, 2011, 436(1):15-34.doi:10.1042/bj20110078. [37] 宋凝曦, 谢寅峰, 李霞. 干旱胁迫下表观遗传机制对转C4型PEPC基因水稻种子萌发的影响[J]. 植物学报, 2020, 55(6):677-692.doi:10.11983/CBB20048. Song N X, Xie Y F, Li X. Effects of epigenetic mechanisms on C4 phosphoenolpyruvate carboxylase transgenic rice (Oryza sativa) seed germination under drought stress[J]. Chinese Bulletin of Botany, 2020, 55(6):677-692. [38] He Y F, Xie Y F, Li X, Yang J. Drought tolerance of transgenic rice overexpressing maize C4-PEPC gene related to increased anthocyanin synthesis regulated by sucrose and calcium[J]. Biologia Plantarum, 2020, 64:136-149.doi:10.32615/bp.2020.031. [39] Tang Y T, Li X, Lu W, Wei X D, Zhang Q J, Lü C G, Song N X. Enhanced photorespiration in transgenic rice over-expressing maize C4 phosphoenolpyruvate carboxylase gene contributes to alleviating low nitrogen stress[J]. Plant Physiology and Biochemistry, 2018, 130:577-588.doi:10.1016/j.plaphy.2018.08.013. [40] 何亚飞, 李霞, 谢寅峰.植物中糖信号及其对逆境调控的研究进展[J]. 植物生理学报, 2016, 52(3):241-249.doi:10.13592/j.cnki.ppj.2015.0554. He Y F, Li X, Xie Y F. Research progress in sugar signal and its regulation of stress in plants[J]. Plant Physiology Journal, 2016, 52(3):241-249. [41] Zhang C, Li X, He Y F, Zhang J F, Yan T, Liu X L. Physiological investigation of C4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance[J]. Plant Physiology and Biochemistry, 2017, 115:328-342.doi:10.1016/j.plaphy.2017.03.019. [42] 张金飞, 李霞, 何亚飞, 谢寅峰. 外源葡萄糖增强高表达转玉米C4型PEPC水稻耐旱性的生理机制[J]. 作物学报, 2018, 44(1):82-94.doi:10.3724/SP.J.1006.2018.00082. Zhang J F, Li X, He Y F, Xie Y F. Physiological mechanism on drought tolerance enhanced by exogenous glucose in C4-PEPC rice[J]. Acta Agronomica Sinica, 2018, 44(1):82-94. [43] Morales-Ruiz T, Ortega-Galisteo A P, Ponferrada-Marín M I, Martínez-Macías M I, Ariza R R, Roldán-Arjona T. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(18):6853-6858.doi:10.1073/pnas.0601109103. [44] Williams B P, Gehring M. Stable transgenerational epigenetic inheritance requires a DNA methylation-sensing circuit[J]. Nature Communications, 2017, 8(1):2124-2132.doi:10.1038/s41467-017-02219-3. [45] Morales-Ruiz T, Ortega-Galisteo A P, Ponferrada-Marin M I, Martínez-Macías M I, Ariza R R, Roldán-Arjona T. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(18):6853-6858, doi:10.1073/pnas.0601109103. [46] 石鹏, 王永, 金龙飞, 张大鹏, 赵志浩, 曹红星, 雷新涛. 植物组织培养过程中的DNA甲基化研究进展[J]. 热带作物学报, 2019, 40(1):199-207.doi:10.3969/j.issn.1000-2561.2019.01.029. Shi P, Wang Y, Jin L F, Zhang D P, Zhao Z H, Cao H X, Lei X T. Research progress on DNA methylation during plant tissue culture[J]. Chinese Journal of Tropical Crops, 2019, 40(1):199-207. [47] Tyunin A P, Kiselev K V, Zhuravlev Y N. Effects of 5-azacytidine induced DNA demethylation on methyltransferase gene expression and resveratrol production in cell cultures of Vitis amurensis[J]. Plant Cell, Tissue and Organ Culture, 2012, 111(1):91-100.doi:10.1007/s11240-012-0175-0. [48] Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K, Tokuji Y. Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor[J]. Journal of Plant Physiology, 2005, 162(1):47-54.doi:10.1016/j.jplph.2004.05.013. [49] Castilho A, Neves N, Rufini-Castiglione M, Viegas W, Heslop-Harrison J S.5-methylcytosine distribution and genome organization in triticale before and after treatment with 5-azacytidine[J]. Journal of Cell Science, 1999, 112(23):4397-4404.doi:10.1242/jcs.112.23.4397. [50] 侯泽豪, 杨飞, 商水根, 方汉顺, 张文英, 徐延浩. 丁酸钠和5-氮杂胞苷对大麦、水稻、玉米、小麦种子萌发及芽苗期生长的影响[J]. 江苏农业科学, 2017, 45(22):73-77.doi:10.15889/j.issn.1002-1302.2017.22.019. Hou Z H, Yang F, Shang S G, Fang H S, Zhang W Y, Xu Y H. Sodium butyrate and 5-azacytidine on seed germination and growth in seedling stage of barley, rice, maize and wheat[J]. Jiangsu Agricultural Sciences, 2017, 45(22):73-77. [51] Solís M T, El-Tantawy A A, Cano V, Risueño M C, Testillano P S.5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley[J]. Frontiers in Plant Science, 2015, 6:472.doi:10.3389/fpls.2015.00472. [52] Munsamy A, Rutherford R S, Snyman S J, Watt M P. 5-Azacytidine as a tool to induce somaclonal variants with useful traits in sugarcane (Saccharum spp.) [J]. Plant Biotechnology Reports, 2013, 7(4):489-502.doi:10.1007/s11816-013-0287-y. |