[1] |
国家药典委员会. 中华人民共和国药典一部:2020年版[M]. 北京: 中国医药科技出版社, 2020:143-144.
|
|
State Pharmacopoeia Committee of China. Pharmacopoeia of the People's Republic of China-Part Ⅰ,2020[M]. Beijing: China Medical Science Press, 2020:143-144.
|
[2] |
李时珍. 本草纲目:校点本[M]. 北京: 人民卫生出版社, 1982:827.
|
|
Li S Z. Compendium of materia medica(Collated and Punctuated Text)[M]. Beijing: People's Medical Publishing House, 1982:827.
|
[3] |
doi: 10.7501/j.issn.0253-2670.2022.09.029
|
|
Ye Q, Chen J P, Ling Y, Liu Y M, Liu Y, Gai X H, Tian C W, Chen C Q. Research progress on chemical constituents and pharmacological effects of Ardisiae Crenatae Radix[J]. Chinese Traditional and Herbal Drugs, 2022, 53(9):2851-2860.
|
[4] |
doi: 10.3969/j.issn.1005-9903.2011.11.083
|
|
Zhang W, Li K, Li D, Qi X F, Kang W Y. Development of chemical and pharmacological of Ardisia crenata[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2011, 17(11):279-282.
|
[5] |
Zheng Z F, Xu J F, Feng Z M, Zhang P C. Cytotoxic triterpenoid saponins from the roots of Ardisia crenata[J]. Journal of Asian Natural Products Research, 2008, 10(9/10):833-839.doi: 10.1080/10286020802102568.
doi: 10.1080/10286020802102568
URL
|
[6] |
Yendo A C A, de Costa F, Gosmann G, Fett-Neto A G. Production of plant bioactive triterpenoid saponins:Elicitation strategies and target genes to improve yields[J]. Molecular Biotechnology, 2010, 46(1):94-104.doi: 10.1007/s12033-010-9257-6.
doi: 10.1007/s12033-010-9257-6
pmid: 20204713
|
[7] |
Yao L, Lu J, Wang J, Gao W Y. Advances in biosynthesis of triterpenoid saponins in medicinal plants[J]. Chinese Journal of Natural Medicines, 2020, 18(6):417-424.doi: 10.1016/s1875-5364(20)30049-2.
doi: S1875-5364(20)30049-2
pmid: 32503733
|
[8] |
doi: 10.7501/j.issn.0253-2670.2019.21.031
|
|
Liu H B, Shangguan Y N, Pan Y C, Zhao Z Q, Li L, Xu D L. Applications of RNA-Seq technology on medicinal plants[J]. Chinese Traditional and Herbal Drugs, 2019, 50(21):5346-5354.
|
[9] |
张绍鹏, 金健, 胡炳雄, 吴亚运, 闫祺, 曾万勇, 郑用琏, 张西峰, 陈平. 珍稀药用植物珠子参的转录组测序及分析[J]. 中国中药杂志, 2015, 40(11):2084-2089.doi: 10.4268/cjcmm20151105.
doi: 10.4268/cjcmm20151105
|
|
Zhang S P, Jin J, Hu B X, Wu Y Y, Yan Q, Zeng W Y, Zheng Y L, Zhang X F, Chen P. Transcriptome profiling and analysis of Panax japonicus var.major[J]. China Journal of Chinese Materia Medica, 2015, 40(11):2084-2089.
|
[10] |
Shen C J, Guo H, Chen H L, Shi Y J, Meng Y J, Lu J J, Feng S G, Wang H Z. Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq[J]. Sci Rep, 2017, 7(1):187.doi: 10.1038/s41598-017-00292-8.
doi: 10.1038/s41598-017-00292-8
|
[11] |
魏一丁, 熊超, 张天缘, 高翰, 尹青岗, 姚辉, 孙伟, 胡志刚, 陈士林. 基于转录组数据对七叶树中三萜皂苷合成途径的研究[J]. 中国中药杂志, 2019, 44(6):1135-1144.doi: 10.19540/j.cnki.cjcmm.20190118.012.
doi: 10.19540/j.cnki.cjcmm.20190118.012
pmid: 30989975
|
|
Wei Y D, Xiong C, Zhang T Y, Gao H, Yin Q G, Yao H, Sun W, Hu Z G, Chen S L. Synthesis of triterpenoid saponins from Aesculus chinensis based on transcriptome data[J]. China Journal of Chinese Materia Medica, 2019, 44(6):1135-1144.
doi: 10.19540/j.cnki.cjcmm.20190118.012
pmid: 30989975
|
[12] |
Jin M L, Lee W M, Kim O T. Two cycloartenol synthases for phytosterol biosynthesis in Polygala tenuifolia Willd[J]. International Journal of Molecular Sciences, 2017, 18(11):E2426.doi: 10.3390/ijms18112426.
doi: 10.3390/ijms18112426
|
[13] |
Li Q, Ding G, Li B, Guo S X. Transcriptome analysis of genes involved in dendrobine biosynthesis in Dendrobium nobile lindl.infected with mycorrhizal fungus MF23( Mycena sp.)[J]. Sci Rep, 2017, 7(1):316.doi: 10.1038/s41598-017-00445-9.
doi: 10.1038/s41598-017-00445-9
|
[14] |
doi: 10.7668/hbnxb.20192406
|
|
Wu Y, Chen Y, Wang X Z, Shan F B, Zhang Y, Sun H J. Transcriptome sequencing and bioinformatics analysis of Astragalus complanatus[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(1):42-49.
|
[15] |
Piqtczak E, Kuz'ma L, Wysokin'ska H. The influence of methyl jasmonate and salicylic acid on secondary metabolite production in Rehmannia glutinosa Libosch.hairy root culture[J]. Acta Biologica Cracoviensias Botanica, 2016, 58(1):57-65.doi: 10.1515/abcsb-2016-0004.
doi: 10.1515/abcsb-2016-0004
|
[16] |
De Capite A, Lancaster T, Puthoff D. Salicylic acid treatment increases the levels of triterpene glycosides in Black Cohosh( Actaea racemosa)Rhizomes[J]. Journal of Chemical Ecology, 2016, 42(1):13-16.doi: 10.1007/s10886-015-0655-x.
doi: 10.1007/s10886-015-0655-x
URL
|
[17] |
Tajik S, Zarinkamar F, Soltani B M, Nazari M. Induction of phenolic and flavonoid compounds in leaves of saffron( Crocus sativus L.) by salicylic acid[J]. Scientia Horticulturae, 2019, 257(17):108751.doi: 10.1016/j.scienta.2019.108751.
doi: 10.1016/j.scienta.2019.108751
URL
|
[18] |
doi: 10.7501/j.issn.0253-2670.2019.12.034
|
|
Li J, Hu B X, Peng L, Yang B Y, Luo L, Cao F L, Yan Y G, Zhang G. Effects of salicylic acid and methyl jasmonate on growth,activity of related enzymes and chemical components in Polygala tenuifolia Willd[J]. Chinese Traditional and Herbal Drugs, 2019, 50(12):2976-2982.
|
[19] |
Pu G B, Ma D M, Chen J L, Ma L Q, Wang H, Li G F, Ye H C, Liu B Y. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L.[J]. Plant Cell Reports, 2009, 28(7):1127-1135.doi: 10.1007/s00299-009-0713-3.
doi: 10.1007/s00299-009-0713-3
URL
|
[20] |
doi: 10.3969/j.issn.1008-0805.2011.08.056
|
|
Li Y J, Xia B, Long Q D, Zhang G Q, Zha J, Wang A M, Wang Y L. Determination of main active components in Ardisia crenata[J]. Lishizhen Medicine and Materia Medica Research, 2011, 22(8):1929-1931.
|
[21] |
doi: 10.1360/SSV-2020-0230
|
|
Xu Y Y, Chen Z, Jia L M, Weng X H. Advances in understanding of the biosynthetic pathway and regulatory mechanism of triterpenoid saponins in plants[J]. Scientia Sinica:Vitae, 2021, 51(5):525-555.
|
[22] |
doi: 10.7501/j.issn.0253-2670.2021.05.025
|
|
Liu C, Feng T T, Liu X W, Ding J X, Shi H, Pan J, Zhou Y. Transcriptome analysis and identification of related genes involved in secondary metabolism biosynthesis in Ardisia crispa[J]. Chinese Traditional and Herbal Drugs, 2021, 52(5):1434-1447.
|
[23] |
doi: 10.13422/j.cnki.Syfjx.20181413
|
|
Li Z D, Zhao R H, Zhang Z C, Yu J, Gu W, He sen, Cao G H. Advances in biosynthesis and regulation mechanism of Notoginseng saponins[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(14):207-213.
|
[24] |
Liu D L, Wang N L, Zhang X, Yao X S. Three new triterpenoid saponins from Ardisia crenata[J]. Helvetica Chimica Acta, 2011, 94(4):693-702.doi: 10.1002/hlca.201000285.
doi: 10.1002/hlca.201000285
URL
|
[25] |
Song N N, Yang L M, Zhang M J, An R F, Liu W, Huang X F. Triterpenoid saponins and phenylpropanoid glycoside from the roots of Ardisia crenata and their cytotoxic activities[J]. Chinese Journal of Natural Medicines, 2021, 19(1):63-69.doi: 10.1016/s1875-5364(21)60007-9.
doi: 10.1016/s1875-5364(21)60007-9
URL
|
[26] |
Podolak I, Żuromska-Witek B, Grabowska K, Żebrowska S, Galanty A, Hubicka U. Comparative quantitative study of ardisiacrispin A in extracts from Ardisia crenata Sims varieties and their cytotoxic activities[J]. Chemistry & Biodiversity, 2021, 18(7):e2100335.doi: 10.1002/cbdv.202100335.
doi: 10.1002/cbdv.202100335
|
[27] |
Mynarski A, Wróbel D, Grabowska K, Galanty A. Bioactive benzoquinones content variability in red-berry and white-berry varieties of Ardisia crenata Sims.and assessment of cytotoxic activity[J]. Natural Product Research, 2019, 35(1):157-161.doi: 10.1080/14786419.2019.1614575.
doi: 10.1080/14786419.2019.1614575
URL
|
[28] |
Liu D L, Zhang X, Zhao Y M, Wang N L, Yao X S. Three new triterpenoid saponins from the roots of Ardisia crenata and their cytotoxic activities[J]. Natural Product Research, 2016, 30(23):2694-2703.doi: 10.1080/14786419.2016.1146889.
doi: 10.1080/14786419.2016.1146889
URL
|
[29] |
Mo G Y, Huang F, Fang Y, Han L T, Pennerman K K, Bu L J, Du X W, Bennett J W, Yin G H. Transcriptomic analysis in Anemone flaccida rhizomes reveals ancillary pathway for triterpene saponins biosynthesis and differential responsiveness to phytohormones[J]. Chin J Nat Med, 2019, 17(2):131-144.doi: 10.1016/s1875-5364(19)30015-9.
doi: 10.1016/s1875-5364(19)30015-9
|
[30] |
Wen L L, Yun X Y, Zheng X S, Xu H, Zhan R T, Chen W W, Xu Y P, Chen Y, Zhang J. Transcriptomic comparison reveals candidate genes for triterpenoid biosynthesis in two closely related Ilex species[J]. Frontiers in Plant Science, 2017, 8:634.doi: 10.3389/fpls.2017.00634.
doi: 10.3389/fpls.2017.00634
URL
|
[31] |
Hwang H S, Lee H, Choi Y E. Transcriptomic analysis of Siberian ginseng( Eleutherococcus senticosus)to discover genes involved in saponin biosynthesis[J]. BMC Genomics, 2015, 16(1):180.doi: 10.1186/s12864-015-1357-z.
doi: 10.1186/s12864-015-1357-z
URL
|
[32] |
doi: 10.14188/j.ajsh.2015.02.007
|
|
Diarra S T, Li H, Wang L J, Yang H, Yang T L, Jiang Y Q, Li J R. Effects of salicylic acid on diosgenin biosynthesis in Dioscorea composita[J]. Biotic Resources, 2015, 37(2):29-34,37.
|
[33] |
Cao P F, Wu C G, Dang Z H, Shi L, Jiang A L, Ren A, Zhao M W. Effects of exogenous salicylic acid on ganoderic acid biosynthesis and the expression of key genes in the ganoderic acid biosynthesis pathway in the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes)[J]. Int J Med Mushrooms, 2017, 19(1):65-73.doi: 10.1615/intjmedmushrooms.v19.i1.70.
doi: 10.1615/intjmedmushrooms.v19.i1.70
URL
|
[34] |
Augustin J M, Kuzina V, Andersen S B, Bak S. Molecular activities,biosynthesis and evolution of triterpenoid saponins[J]. Phytochemistry, 2011, 72(6):435-457.doi: 10.1016/j.phytochem.2011.01.015.
doi: 10.1016/j.phytochem.2011.01.015
pmid: 21333312
|
[35] |
Deng B, Zhang P, Ge F, Liu D Q, Chen C Y. Enhancement of triterpenoid saponins biosynthesis in Panax notoginseng cells by co-overexpressions of 3-hydroxy-3-methylglutaryl CoA reductase and squalene synthase genes[J]. Biochemical Engineering Journal, 2017, 122(7):38-46.doi: 10.1016/j.bej.2017.03.001.
doi: 10.1016/j.bej.2017.03.001
URL
|
[36] |
Kim O T, Bang K H, Jung S J, Kim Y C, Hyun D Y, Kim S H, Cha S W. Molecular characterization of ginseng farnesyl diphosphate synthase gene and its up-regulation by methyl jasmonate[J]. Biologia Plantarum, 2010, 54(1):47-53.doi: 10.1007/s10535-010-0007-1.
doi: 10.1007/s10535-010-0007-1
URL
|
[37] |
Gao J X, Chen Y G, Li D S, Lin L, Liu Y, Li S H. Cloning and functional characterization of a squalene synthase from Paris polyphylla var. yunnanensis[J]. Chemistry & Biodiversity, 2021, 18(7):e2100342.doi: 10.1002/cbdv.202100342.
doi: 10.1002/cbdv.202100342
|
[38] |
Ghosh S. Biosynthesis of structurally diverse triterpenes in plants:the role of oxidosqualene cyclases[J]. Proceedings of Indian National Science Academy, 2016, 82(4):1189-1210.doi: 10.16943/ptinsa/2016/48578.
doi: 10.16943/ptinsa/2016/48578
|
[39] |
Miettinen K, Pollier J, Buyst D, Arendt P, Csuk R, Sommerwerk S, Moses T, Mertens J, Sonawane P D, Pauwels L, Aharoni A, Martins J, Melson D R, Goossens A. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis[J]. Nature Communications, 2017, 8(1):14153.doi: 10.1038/ncomms14153.
doi: 10.1038/ncomms14153
|