[1] |
El-Sappah A H, Rather S A, Wani S H, Elrys A S, Bilal M, Huang Q L, Ahmced Dar Z A, Elashtokhy M M A, Soaud N, Koul M, Mir R R, Yan K, Li J, El-Tarabily K A, Abbas M. Heat stress-mediated constraints in maize( Zea mays)production:challenges and solutions[J]. Frontiers in Plant Science, 2022, 13:879366.doi: 10.3389/fpls.2022.879366.
doi: 10.3389/fpls.2022.879366
URL
|
[2] |
Frey F P, Presterl T, Lecoq P, Orlik A, Stich B. First steps to understand heat tolerance of temperate maize at adult stage:Identification of QTL across multiple environments with connected segregating populations[J]. Theoretical and Applied Genetics, 2016, 129(5):945-961.doi: 10.1007/s00122-016-2674-6.
doi: 10.1007/s00122-016-2674-6
URL
|
[3] |
Liang Z K, Myers Z A, Petrella D, Engelhorn J, Hartwig T, Springer N M. Mapping responsive genomic elements to heat stress in a maize diversity panel[J]. Genome Biology, 2022, 23(1):234.doi: 10.1186/s13059-022-02807-7.
doi: 10.1186/s13059-022-02807-7
pmid: 36345007
|
[4] |
Longmei N, Gill G K, Zaidi P H, Kumar R, Nair S K, Hindu V, Vinayan M T, Vikal Y. Genome wide association mapping for heat tolerance in sub-tropical maize[J]. BMC Genomics, 2021, 22(1):154.doi: 10.1186/s12864-021-07463-y.
doi: 10.1186/s12864-021-07463-y
pmid: 33663389
|
[5] |
doi: 10.3969/j.issn.1000-6362.2020.02.004
|
|
Liu S H, Li J, Huang W H, Wang T Y, Li M H. Characteristics and limiting factors of light-temperature potential productivity and yield gap of spring maize in Hunan Province[J]. Chinese Journal of Agrometeorology, 2020, 41(2):94-101.
|
[6] |
杜文丽, 陈中钐, 许端祥, 高山, 温庆放. 基于Illumina HiSeq2500测序技术对高温胁迫下苦瓜叶片转录组特性分析[J]. 分子植物育种, 2019, 17(2):377-387.doi: 10.13271/j.mpb.017.000377.
doi: 10.13271/j.mpb.017.000377
|
|
Du W L, Chen Z S, Xu D X, Gao S, Wen Q F. Transcriptome characterization analysis of Momordica charantia L.leaf under high temperature stress based on illumina HiSeq 2500 sequencing technology[J]. Molecular Plant Breeding, 2019, 17(2):377-387.
|
[7] |
doi: 10.13271/j.mpb.018.005629
|
|
Zhai X M, Tang M, Li J, Chen S C, Hu F J, Hou Y J. Difference analysis of heat stress-responsive transcriptome of Camellia sinensis based on RNA-seq technology[J]. Molecular Plant Breeding, 2020, 18(17):5629-5637.
|
[8] |
doi: 10.3969/j.issn.1000-4440.2021.01.004
|
|
Yao Q L, Huo S P, Zhang J J. Key genes and pathways of maize inbred lines responding to heat and drought stress[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(1):29-37.
|
[9] |
doi: 10.7668/hbnxb.201750986
|
|
Li C, Qiao J F, Zhu W H, Dai S T, Huang L, Zhang M W, Liu J B. Differential expression of high temperature stress in anthesis stage related genes of maize inbred lines[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1):1-11.
doi: 10.7668/hbnxb.201750986
|
[10] |
Li Z G, Ye X Y. Transcriptome response of maize( Zea mays L.)seedlings to heat stress[J]. Protoplasma, 2022, 259(2):357-369.doi: 10.1007/s00709-021-01680-8.
doi: 10.1007/s00709-021-01680-8
|
[11] |
|
|
Li C, Huang L, Qiao J F, Zhang M W, Zhang P P, Niu J, Liu J B, Wang S F. Transcriptome and metabolome analysis of mechanisms responding to high temperature stress during anthesis stage in Zhengdan 309[J]. Journal of Henan Agricultural Sciences, 2021, 50(2):19-31.
|
[12] |
Guo J, Gu X T, Lu W P, Lu D L. Multiomics analysis of kernel development in response to short-term heat stress at the grain formation stage in waxy maize[J]. Journal of Experimental Botany, 2021, 72(18):6291-6304.doi: 10.1093/jxb/erab286.
doi: 10.1093/jxb/erab286
URL
|
[13] |
Gao J Y, Wang S F, Zhou Z J, Wang S W, Dong C P, Mu C, Song Y X, Ma P P, Li C C, Wang Z, He K W, Han C Y, Chen J F, Yu H D, Wu J Y. Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize[J]. Journal of Experimental Botany, 2019, 70(18):4849-4864.doi: 10.1093/jxb/erz171.
doi: 10.1093/jxb/erz171
pmid: 30972421
|
[14] |
McNellie J P, Chen J P, Li X R, Yu J M. Genetic mapping of foliar and tassel heat stress tolerance in maize[J]. Crop Science, 2018, 58(6):2484-2493.doi: 10.2135/cropsci2018.05.0291.
doi: 10.2135/cropsci2018.05.0291
URL
|
[15] |
李川, 乔江方, 黄璐, 张美微, 张盼盼, 牛军, 刘京宝. 转录组及代谢组联合解析玉米响应花粒期高温胁迫机制[J]. 华北农学报, 2020, 35(1):8-21.doi: 10.7668/hbnxb.20190649.
doi: 10.7668/hbnxb.20190649
|
|
Li C, Qiao J F, Huang L, Zhang M W, Zhang P P, Niu J, Liu J B. Transcriptome and metabolome analysis to reveal the mechanisms responding to high temperature stress in anthesis stage of maize[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(1):8-21.
doi: 10.7668/hbnxb.20190649
|
[16] |
Sprague S A, Tamang T M, Steiner T, Wu Q Y, Hu Y, Kakeshpour T, Park J, Yang J, Peng Z, Bergkamp B, Somayanda I, Peterson M, Oliveira Garcia E, Hao Y F, St Amand P S, Bai G H, Nakata P A, Rieu I, Jackson D P, Cheng N H, Valent B, Hirschi K D, Jagadish S K, Liu S Z, White F F, Park S H. Redox-engineering enhances maize thermotolerance and grain yield in the field[J]. Plant Biotechnology Journal, 2022, 20(9):1819-1832.doi: 10.1111/pbi.13866.
doi: 10.1111/pbi.13866
pmid: 35656643
|
[17] |
Li Z X, Howell S H. Heat stress responses and thermotolerance in maize[J]. International Journal of Molecular Sciences, 2021, 22(2):948.doi: 10.3390/ijms22020948.
doi: 10.3390/ijms22020948
URL
|
[18] |
Zenda T, Wang N, Dong A Y, Zhou Y Z, Duan H J. Reproductive-stage heat stress in cereals:impact,plant responses and strategies for tolerance improvement[J]. International Journal of Molecular Sciences, 2022, 23(13):6929.doi: 10.3390/ijms23136929.
doi: 10.3390/ijms23136929
URL
|
[19] |
Li Z G, Ye X Y, Qiu X M. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling[J]. Protoplasma, 2019, 256(4):1165-1169.doi: 10.1007/s00709-019-01351-9.
doi: 10.1007/s00709-019-01351-9
|
[20] |
Qi H H, Chen X K, Luo S, Fan H Z, Guo J H, Zhang X H, Ke Y G, Yang P F, Yu F. Genome wide identification and characterization of heat shock protein 20 genes in maize[J]. Life(basel), 2022, 12(9):1397.doi: 10.3390/life12091397.
doi: 10.3390/life12091397
URL
|