| [1] | El-Sappah A H, Rather S A , Wani S H , Elrys A S , Bilal M , Huang Q L , Ahmced Dar Z A , Elashtokhy M M A , Soaud N , Koul M , Mir R R , Yan K , Li J , El-Tarabily K A , Abbas M . Heat stress-mediated constraints in maize(Zea mays )production:challenges and solutions[J]. Frontiers in Plant Science , 2022 , 13 :879366.doi:10.3389/fpls.2022.879366 .  doi: 10.3389/fpls.2022.879366    
																																					URL
 | 
																													
																							| [2] | Frey F P, Presterl T , Lecoq P , Orlik A , Stich B . First steps to understand heat tolerance of temperate maize at adult stage:Identification of QTL across multiple environments with connected segregating populations[J]. Theoretical and Applied Genetics , 2016 , 129 (5):945-961.doi:10.1007/s00122-016-2674-6 .  doi: 10.1007/s00122-016-2674-6    
																																					URL
 | 
																													
																							| [3] | Liang Z K, Myers Z A , Petrella D , Engelhorn J , Hartwig T , Springer N M . Mapping responsive genomic elements to heat stress in a maize diversity panel[J]. Genome Biology , 2022 , 23 (1):234.doi:10.1186/s13059-022-02807-7 .  doi: 10.1186/s13059-022-02807-7    
																																																	pmid: 36345007
 | 
																													
																							| [4] | Longmei N, Gill G K , Zaidi P H , Kumar R , Nair S K , Hindu V , Vinayan M T , Vikal Y . Genome wide association mapping for heat tolerance in sub-tropical maize[J]. BMC Genomics , 2021 , 22 (1):154.doi:10.1186/s12864-021-07463-y .  doi: 10.1186/s12864-021-07463-y    
																																																	pmid: 33663389
 | 
																													
																							| [5] | doi: 10.3969/j.issn.1000-6362.2020.02.004
 | 
																													
																							|  | Liu S H, Li J, Huang W H, Wang T Y, Li M H. Characteristics and limiting factors of light-temperature potential productivity and yield gap of spring maize in Hunan Province[J]. Chinese Journal of Agrometeorology, 2020, 41(2):94-101. | 
																													
																							| [6] | 杜文丽, 陈中钐, 许端祥, 高山, 温庆放. 基于Illumina HiSeq2500测序技术对高温胁迫下苦瓜叶片转录组特性分析[J]. 分子植物育种 , 2019 , 17 (2):377-387.doi:10.13271/j.mpb.017.000377 . doi: 10.13271/j.mpb.017.000377
 | 
																													
																							|  | Du W L, Chen Z S, Xu D X, Gao S, Wen Q F. Transcriptome characterization analysis of Momordica charantia L.leaf under high temperature stress based on illumina HiSeq 2500 sequencing technology[J]. Molecular Plant Breeding, 2019, 17(2):377-387. | 
																													
																							| [7] | doi: 10.13271/j.mpb.018.005629
 | 
																													
																							|  | Zhai X M, Tang M, Li J, Chen S C, Hu F J, Hou Y J. Difference analysis of heat stress-responsive transcriptome of Camellia sinensis based on RNA-seq technology[J]. Molecular Plant Breeding, 2020, 18(17):5629-5637. | 
																													
																							| [8] | doi: 10.3969/j.issn.1000-4440.2021.01.004
 | 
																													
																							|  | Yao Q L, Huo S P, Zhang J J. Key genes and pathways of maize inbred lines responding to heat and drought stress[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(1):29-37. | 
																													
																							| [9] | doi: 10.7668/hbnxb.201750986
 | 
																													
																							|  | Li C, Qiao J F, Zhu W H, Dai S T, Huang L, Zhang M W, Liu J B. Differential expression of high temperature stress in anthesis stage related genes of maize inbred lines[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1):1-11.  doi: 10.7668/hbnxb.201750986
 | 
																													
																							| [10] | Li Z G, Ye X Y . Transcriptome response of maize(Zea mays  L.)seedlings to heat stress[J]. Protoplasma , 2022 , 259 (2):357-369.doi:10.1007/s00709-021-01680-8 .  doi: 10.1007/s00709-021-01680-8
 | 
																													
																							| [11] |  | 
																													
																							|  | Li C, Huang L, Qiao J F, Zhang M W, Zhang P P, Niu J, Liu J B, Wang S F. Transcriptome and metabolome analysis of mechanisms responding to high temperature stress during anthesis stage in Zhengdan 309[J]. Journal of Henan Agricultural Sciences, 2021, 50(2):19-31. | 
																													
																							| [12] | Guo J, Gu X T , Lu W P , Lu D L . Multiomics analysis of kernel development in response to short-term heat stress at the grain formation stage in waxy maize[J]. Journal of Experimental Botany , 2021 , 72 (18):6291-6304.doi:10.1093/jxb/erab286 .  doi: 10.1093/jxb/erab286    
																																					URL
 | 
																													
																							| [13] | Gao J Y, Wang S F , Zhou Z J , Wang S W , Dong C P , Mu C , Song Y X , Ma P P , Li C C , Wang Z , He K W , Han C Y , Chen J F , Yu H D , Wu J Y . Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize[J]. Journal of Experimental Botany , 2019 , 70 (18):4849-4864.doi:10.1093/jxb/erz171 .  doi: 10.1093/jxb/erz171    
																																																	pmid: 30972421
 | 
																													
																							| [14] | McNellie J P, Chen J P , Li X R , Yu J M . Genetic mapping of foliar and tassel heat stress tolerance in maize[J]. Crop Science , 2018 , 58 (6):2484-2493.doi:10.2135/cropsci2018.05.0291 .  doi: 10.2135/cropsci2018.05.0291    
																																					URL
 | 
																													
																							| [15] | 李川, 乔江方, 黄璐, 张美微, 张盼盼, 牛军, 刘京宝. 转录组及代谢组联合解析玉米响应花粒期高温胁迫机制[J]. 华北农学报 , 2020 , 35 (1):8-21.doi:10.7668/hbnxb.20190649 . doi: 10.7668/hbnxb.20190649
 | 
																													
																							|  | Li C, Qiao J F, Huang L, Zhang M W, Zhang P P, Niu J, Liu J B. Transcriptome and metabolome analysis to reveal the mechanisms responding to high temperature stress in anthesis stage of maize[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(1):8-21.  doi: 10.7668/hbnxb.20190649
 | 
																													
																							| [16] | Sprague S A, Tamang T M , Steiner T , Wu Q Y , Hu Y , Kakeshpour T , Park J , Yang J , Peng Z , Bergkamp B , Somayanda I , Peterson M , Oliveira Garcia E , Hao Y F , St Amand P S , Bai G H , Nakata P A , Rieu I , Jackson D P , Cheng N H , Valent B , Hirschi K D , Jagadish S K , Liu S Z , White F F , Park S H . Redox-engineering enhances maize thermotolerance and grain yield in the field[J]. Plant Biotechnology Journal , 2022 , 20 (9):1819-1832.doi:10.1111/pbi.13866 .  doi: 10.1111/pbi.13866    
																																																	pmid: 35656643
 | 
																													
																							| [17] | Li Z X, Howell S H . Heat stress responses and thermotolerance in maize[J]. International Journal of Molecular Sciences , 2021 , 22 (2):948.doi:10.3390/ijms22020948 .  doi: 10.3390/ijms22020948    
																																					URL
 | 
																													
																							| [18] | Zenda T, Wang N , Dong A Y , Zhou Y Z , Duan H J . Reproductive-stage heat stress in cereals:impact,plant responses and strategies for tolerance improvement[J]. International Journal of Molecular Sciences , 2022 , 23 (13):6929.doi:10.3390/ijms23136929 .  doi: 10.3390/ijms23136929    
																																					URL
 | 
																													
																							| [19] | Li Z G, Ye X Y , Qiu X M . Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling[J]. Protoplasma , 2019 , 256 (4):1165-1169.doi:10.1007/s00709-019-01351-9 .  doi: 10.1007/s00709-019-01351-9
 | 
																													
																							| [20] | Qi H H, Chen X K , Luo S , Fan H Z , Guo J H , Zhang X H , Ke Y G , Yang P F , Yu F . Genome wide identification and characterization of heat shock protein 20 genes in maize[J]. Life(basel) , 2022 , 12 (9):1397.doi:10.3390/life12091397 .  doi: 10.3390/life12091397    
																																					URL
 |