[1] |
doi: 10.1126/science.218.4571.443
pmid: 17808529
|
[2] |
Valliyodan B, Nguyen H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants[J]. Current Opinion in Plant Biology, 2006, 9(2):189-195.doi: 10.1016/j.pbi.2006.01.019.
doi: 10.1016/j.pbi.2006.01.019
pmid: 16483835
|
[3] |
Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors:Their role in drought response mechanisms[J]. International Journal of Molecular Sciences, 2015, 16(7):15811-15851.doi: 10.3390/ijms160715811.
doi: 10.3390/ijms160715811
pmid: 26184177
|
[4] |
Castilhos G, Lazzarotto F, Spagnolo-Fonini L, Bodanese-Zanettini M H, Margis-Pinheiro M. Possible roles of basic helix-loop-helix transcription factors in adaptation to drought[J]. Plant Science, 2014, 223:1-7.doi: 10.1016/j.plantsci.2014.02.010.
doi: 10.1016/j.plantsci.2014.02.010
pmid: 24767109
|
[5] |
Chen L G, Song Y, Li S J, Zhang L P, Zou C S, Yu D Q. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta, 2012, 1819(2):120-128.doi: 10.1016/j.bbagrm.2011.09.002.
doi: 10.1016/j.bbagrm.2011.09.002
pmid: 21964328
|
[6] |
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta, 2012, 1819(2):86-96.doi: 10.1016/j.bbagrm.2011.08.004.
doi: 10.1016/j.bbagrm.2011.08.004
pmid: 21867785
|
[7] |
Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta, 2012, 1819(2):97-103.doi: 10.1016/j.bbagrm.2011.10.005.
doi: 10.1016/j.bbagrm.2011.10.005
pmid: 22037288
|
[8] |
Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought,cold,and heat[J]. Frontiers in Plant Science, 2014, 5:170.doi: 10.3389/fpls.2014.00170.
doi: 10.3389/fpls.2014.00170
pmid: 24904597
|
[9] |
Wu Y R, Deng Z Y, Lai J B, Zhang Y Y, Yang C P, Yin B J, Zhao Q Z, Zhang L, Li Y, Yang C W, Xie Q. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses[J]. Cell Research, 2009, 19(11):1279-1290.doi: 10.1038/cr.2009.108.
doi: 10.1038/cr.2009.108
|
[10] |
Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(49):18822-18827.doi: 10.1073/pnas.0605639103.
doi: 10.1073/pnas.0605639103
pmid: 17030801
|
[11] |
Zhang Z Y, Liu X, Wang X D, Zhou M P, Zhou X Y, Ye X G, Wei X N. An R2R3 MYB transcription factor in wheat,TaPIMP1,mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense-and stress-related genes[J]. The New Phytologist, 2012, 196(4):1155-1170.doi: 10.1111/j.1469-8137.2012.04353.x.
doi: 10.1111/j.1469-8137.2012.04353.x
URL
|
[12] |
Raineri J, Wang S H, Peleg Z, Blumwald E, Chan R L. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress[J]. Plant Molecular Biology, 2015, 88(4/5):401-413.doi: 10.1007/s11103-015-0329-7.
doi: 10.1007/s11103-015-0329-7
URL
|
[13] |
Lawson T, Blatt M R. Stomatal size,speed,and responsiveness impact on photosynthesis and water use efficiency[J]. Plant Physiology, 2014, 164(4):1556-1570.doi: 10.1104/pp.114.237107.
doi: 10.1104/pp.114.237107
pmid: 24578506
|
[14] |
Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40:503-537.doi: 10.1146/annurev.pp.40.060189.002443.
doi: 10.1146/annurev.pp.40.060189.002443
URL
|
[15] |
Franks P J, Adams M A, Amthor J S, Barbour M M, Berry J A, Ellsworth D S, Farquhar G D, Ghannoum O, Lloyd J, McDowell N, Norby R J, Tissue D T, von Caemmerer S.Sensitivity of plants to changing atmospheric CO 2 concentration:From the geological past to the next century[J]. The New Phytologist, 2013, 197(4):1077-1094.doi: 10.1111/nph.12104.
doi: 10.1111/nph.12104
URL
|
[16] |
Des Marais D L, Auchincloss L C, Sukamtoh E, McKay J K, Logan T, Richards J H, Juenger T E. Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(7):2836-2841.doi: 10.1073/pnas.1321429111.
doi: 10.1073/pnas.1321429111
pmid: 24550314
|
[17] |
Chaerle L, Saibo N, Van Der Straeten D.Tuning the pores:Towards engineering plants for improved water use efficiency[J]. Trends in Biotechnology, 2005, 23(6):308-315.doi: 10.1016/j.tibtech.2005.04.005.
doi: 10.1016/j.tibtech.2005.04.005
pmid: 15922083
|
[18] |
Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid K A S, Romeis T, Hedrich R. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50):21425-21430.doi: 10.1073/pnas.0912021106.
doi: 10.1073/pnas.0912021106
pmid: 19955405
|
[19] |
Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. The Plant Cell, 2002, 14(12):3089-3099.doi: 10.1105/tpc.007906.
doi: 10.1105/tpc.007906
URL
|
[20] |
Yang Z Y, Liu J H, Tischer S V, Christmann A, Windisch W, Schnyder H, Grill E. Leveraging abscisic acid receptors for efficient water use in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(24):6791-6796.doi: 10.1073/pnas.1601954113.
doi: 10.1073/pnas.1601954113
|
[21] |
Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid:emergence of a core signaling network[J]. Annual Review of Plant Biology, 2010, 61:651-679.doi: 10.1146/annurev-arplant-042809-112122.
doi: 10.1146/annurev-arplant-042809-112122
pmid: 20192755
|
[22] |
Zhao Y, Chan Z L, Gao J H, Xing L, Cao M J, Yu C M, Hu Y L, You J, Shi H T, Zhu Y F, Gong Y H, Mu Z X, Wang H Q, Deng X, Wang P C, Bressan R A, Zhu J K. ABA receptor PYL9 promotes drought resistance and leaf senescence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7):1949-1954.doi: 10.1073/pnas.1522840113.
doi: 10.1073/pnas.1522840113
pmid: 26831097
|
[23] |
Pizzio G A, Rodriguez L, Antoni R, Gonzalez-Guzman M, Yunta C, Merilo E, Kollist H, Albert A, Rodriguez P L. The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance[J]. Plant Physiology, 2013, 163(1):441-455.doi: 10.1104/pp.113.224162.
doi: 10.1104/pp.113.224162
pmid: 23864556
|
[24] |
Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S Y, Márquez J A, Cutler S R, Rodriguez P L. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs[J]. The Plant Journal, 2009, 60(4):575-588.doi: 10.1111/j.1365-313X.2009.03981.x.
doi: 10.1111/j.1365-313X.2009.03981.x
pmid: 19624469
|
[25] |
Rubio S, Rodrigues A, Saez A, Dizon M B, Galle A, Kim T H, Santiago J, Flexas J, Schroeder J I, Rodriguez P L. Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid[J]. Plant Physiology, 2009, 150(3):1345-1355.doi: 10.1104/pp.109.137174.
doi: 10.1104/pp.109.137174
pmid: 19458118
|
[26] |
Zhang J J, Xu Y J, Chen W, Dell B, Vergauwen R, Biddulph B, Khan N, Luo H, Appels R, Van den Ende W.A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought[J]. The New Phytologist, 2015, 205(1):293-305.doi: 10.1111/nph.13030.
doi: 10.1111/nph.13030
URL
|
[27] |
Wei B, Jing R L, Wang C S, Chen J B, Mao X G, Chang X P, Jia J Z. Dreb1 genes in wheat( Triticum aestivum L.):development of functional markers and gene mapping based on SNPs[J]. Molecular Breeding, 2009, 23(1):13-22.doi: 10.1007/s11032-008-9209-z.
doi: 10.1007/s11032-008-9209-z
URL
|
[28] |
Jiang Y M, Jiang Q Y, Hao C Y, Hou J, Wang L F, Zhang H N, Zhang S N, Chen X H, Zhang X H. A yield-associated gene TaCWI,in wheat:Its function,selection and evolution in global breeding revealed by haplotype analysis[J]. Theoretical and Applied Genetics, 2015, 128(1):131-143.doi: 10.1007/s00122-014-2417-5.
doi: 10.1007/s00122-014-2417-5
URL
|
[29] |
Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat[J]. Theoretical and Applied Genetics, 2016, 129(10):1843-1860. doi: 10.1007/s00122-016-2743-x.
doi: 10.1007/s00122-016-2743-x
pmid: 27306516
|
[30] |
doi: 10.15889/j.issn.1002-1302.2021.24.009
|
|
Yuan Q, Zhang F, Zhang Z Z, Zhen S C, Wang J S, Zhao Y T, Lu J H, Fan Z Y. KASP marker detection of important functional genes of national wheat variety Luomai 18[J]. Jiangsu Agricultural Sciences, 2021, 49(24): 56-59.
|
[31] |
doi: 10.13271/j.mpb.019.000518
|
|
Gao Z X, Zhao Y K, Ban J F, Zhang G C, Cao Q, Fu X Y, Di Z H, Shi Z L. Detection of important agronomic traits of wheat by KASP markers in Hebei Province[J]. Molecular Plant Breeding, 2021, 19(2):518-528.
|
[32] |
王志伟, 乔祥梅, 王志龙, 杨金华, 程加省, 程耿, 于亚雄. 云南小麦品种(系)抗逆性相关基因的KASP标记检测[J]. 西南农业学报, 2020, 33(8):1601-1607.
|
|
Wang Z W, Qiao X M, Wang Z L, Yang J H, Cheng J S, Cheng G, Yu Y X. Identification of genes associated with stress resistance in Yunnan wheat cultivars(lines)by KASP assays[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(8):1601-1607.doi: 10.16213/j.cnki.scjas.2020.8.001.
doi: 10.16213/j.cnki.scjas.2020.8.001
|
[33] |
张海萍, 常成, 游光霞, 张秀英, 闫长生, 肖世和, 司红起, 卢杰, 马传喜. 中国小麦微核心种质及地方品种籽粒休眠特性的分子标记鉴定[J]. 作物学报, 2010, 36(10):1649-1656. doi: 10.3724/SP.J.1006.2010.01649.
doi: 10.3724/SP.J.1006.2010.01649
|
|
Zhang H P, Chang C, You G X, Zhang X Y, Yan C S, Xiao S H, Si H Q, Lu J, Ma C X. Identification of molecular markers associated with seed dormancy in mini core collections of Chinese wheat and landraces[J]. Acta Agronomica Sinica, 2010, 36(10):1649-1656.
doi: 10.1016/S1875-2780(09)60077-8
URL
|
[34] |
doi: 10.3969/j.issn.1009-1041.2007.03.012
|
|
Wang R, Liu H Y, Li H L, Wang J M, Yi Y J. Identification of PCR markers linked to wheat powdery mildew resistance gene Pm6[J]. Journal of Triticeae Crops, 2007, 27(3):421-424.
|
[35] |
王俊美. 小麦抗白粉病基因Pm4、Pm6的PCR鉴定[D]. 杨凌: 西北农林科技大学, 2005.
|
|
Wang J M. PCR identification of wheat powdery mildew resistance genes Pm4 and Pm6[D]. Yangling: Northwest Agriculture and Forestry University, 2005.
|