[1] Vadde B V L, Challa K R, Nath U. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana[J]. The Plant Journal, 2018, 93(2):259-269.doi:10.1111/tpj.13772. [2] Liu J, Cheng X L, Liu P, Li D Y, Chen T, Gu X F, Sun J Q. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis[J]. PLoS Genetics, 2017, 13(5):e1006833.doi:10.1371/journal.pgen.1006833. [3] Kubota A, Ito S, Shim J S, Johnson R S, Song Y H, Breton G, Goralogia G S, Kwon M S, Laboy Cintrón D, Koyama T, Ohme-Takagi M, Pruneda-Paz J L, Kay S A, MacCoss M J, Imaizumi T. TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis[J]. PLoS Genetics, 2017, 13(6):e1006856.doi:10.1371/journal.pgen.1006856. [4] Guan P Z, Ripoll J J, Wang R H, Vuong L, Bailey-Steinitz L J, Ye D N, Crawford N M. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9):2419-2424.doi:10.1073/pnas.1615676114. [5] Wang H Y, Wang H L, Shao H B, Tang X L. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant Science, 2016, 7:67.doi:10.3389/fpls.2016.00067. [6] Challa K R, Aggarwal P, Nath U. Activation of YUCCA5 by the transcription factor TCP4 integrates developmental and environmental signals to promote hypocotyl elongation in Arabidopsis[J]. The Plant Cell, 2016, 28(9):2117-2130.doi:10.1105/tpc.16.00360. [7] Gahlaut V, Jaiswal V, Kumar A, Gupta P K. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat(Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 2016, 129(11):2019-2042.doi:10.1007/s00122-016-2794-z. [8] Mao Y F, Wu F J, Yu X, Bai J J, Zhong W L, He Y K. microRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in Chinese cabbage by differential cell division arrest in leaf regions[J]. Plant Physiology, 2014, 164(2):710-720.doi:10.1104/pp.113.228007. [9] Wang W, Ye R Q, Xin Y, Fang X F, Li C L, Shi H Q, Zhou X P, Qi Y J. An importin β protein negatively regulates MicroRNA activity in Arabidopsis[J]. The Plant Cell, 2011, 23(10):3565-3576.doi:10.1105/tpc.111.091058. [10] Liu L J, Zhang Y Y, Tang S Y, Zhao Q Z, Zhang Z H, Zhang H W, Dong L, Guo H S, Xie Q. An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana[J]. The Plant Journal, 2010, 61(5):893-903.doi:10.1111/j.1365-313X.2009.04109.x. [11] Li W P, Chen G L, Xiao G S, Zhu S S, Zhou N, Zhu P P, Zhang Q, Hu T Z. Overexpression of TCP transcription factor OsPCF7 improves agronomic trait in rice[J]. Molecular Breeding, 2020, 40(5):1-13.doi:10.1007/s11032-020-01129-5. [12] Liu M M, Wang M M, Yang J, Wen J, Guo P C, Wu Y W, Ke Y Z, Li P F, Li J N, Du H. Evolutionary and comparative expression analyses of TCP transcription factor gene family in land plants[J]. International Journal of Molecular Sciences, 2019, 20(14):3591.doi:10.3390/ijms20143591. [13] Martín-Trillo M, Cubas P. TCP genes:A family snapshot ten years later[J]. Trends in Plant Science, 2010, 15(1):31-39.doi:10.1016/j.tplants.2009.11.003. [14] Cubas P, Lauter N, Doebley J, Coen E. The TCP domain:a motif found in proteins regulating plant growth and development[J]. The Plant Journal, 1999, 18(2):215-222.doi:10.1046/j.1365-313X.1999.00444.x. [15] Howarth D G, Donoghue M J. Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(24):9101-9106.doi:10.1073/pnas.0602827103. [16] Nicolas M, Cubas P. TCP factors:New kids on the signaling block[J]. Current Opinion in Plant Biology, 2016, 33:33-41.doi:10.1016/j.pbi.2016.05.006. [17] Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family[J]. The Plant Journal, 2002, 30(3):337-348.doi:10.1046/j.1365-313x.2002.01294.x. [18] Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis[J]. The Plant Cell, 2010, 22(11):3574-3588.doi:10.1105/tpc.110.075598. [19] Noh M, Shin J S, Hong J C, Kim S Y, Shin J S. Arabidopsis TCX8 functions as a senescence modulator by regulating LOX2 expression[J]. Plant Cell Reports, 2021, 40(4):677-689.doi:10.1007/s00299-021-02663-y. [20] Bresso E G, Chorostecki U, Rodriguez R E, Palatnik J F, Schommer C. Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development[J]. Plant Physiology, 2018, 176(2):1694-1708.doi:10.1104/pp.17.00823. |