[1] |
|
|
Yang J Y, Yan M, Wu H B, Yang W L, Wang H J, Mao J C, Zhai W Q, Li J H. The effect of high temperature on seed germination and comprehensive evaluation of heat tolerance of different thick skinned melon varieties[J]. Xinjiang Agricultural Sciences, 2024, 61(6):1386-1396.
|
[2] |
Sharma N, Thakur M, Suryakumar P, Mukherjee P, Raza A, Prakash C S, Anand A. Breathing out under heat stress-respiratory control of crop yield under high temperature[J]. Agronomy, 2022, 12(4):806.doi: 10.3390/agronomy12040806.
|
[3] |
Babbar R, Karpinska B, Grover A, Foyer C H. Heat-induced oxidation of the nuclei and cytosol[J]. Frontiers in Plant Science, 2021,11:617779.doi: 10.3389/fpls.2020.617779.
|
[4] |
Zhang B R, Gao H G, Wang G Z, Zhang S C, Shi M R, Li Y, Huang Z Q, Xiang W S, Gao W N, Zhang C, Liu X L. Guvermectin,a novel plant growth regulator,can promote the growth and high temperature tolerance of maize[J]. Frontiers in Plant Science, 2022,13:1025634.doi: 10.3389/fpls.2022.1025634.
|
[5] |
Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah A N, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J L. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature[J]. Frontiers in Plant Science, 2016,7:1250.doi: 10.3389/fpls.2016.01250.
|
[6] |
Rehman A, Khalid M, Weng J Y, Li P L, Rahman S U, Shah I H, Gulzar S, Tu S, Feng N X, Niu Q L, Chang L Y. Exploring drought tolerance in melon germplasm through physiochemical and photosynthetic traits[J]. Plant Growth Regulation, 2024, 102(3):603-618.doi: 10.1007/s10725-023-01080-3.
|
[7] |
Ji W, Hong E M, Chen X, Li Z J, Lin B Y, Xia X Z, Li T Y, Song X Z, Jin S H, Zhu X T. Photosynthetic and physiological responses of different peony cultivars to high temperature[J]. Frontiers in Plant Science, 2022,13:969718.doi: 10.3389/fpls.2022.969718.
|
[8] |
Goraya G K, Kaur B, Asthir B, Bala S, Kaur G, Farooq M. Rapid injuries of high temperature in plants[J]. Journal of Plant Biology, 2017, 60(4):298-305.doi: 10.1007/s12374-016-0365-0.
|
[9] |
|
|
Wang Z W, Li H, Liang S H, Chu X, Sun X W. Effects of cadmium on growth and some physiological of oriental melon seedlings[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(1):81-88.
|
[10] |
Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F.Reactive oxygen species signalling in plant stress responses[J]. Nature Reviews Molecular Cell Biology, 2022, 23(10):663-679.doi: 10.1038/s41580-022-00499-2.
|
[11] |
Foyer C H, Noctor G. Ascorbate and glutathione:the heart of the redox hub[J]. Plant Physiology, 2011, 155(1):2-18.doi: 10.1104/pp.110.167569.
|
[12] |
宋慧, 黄芸萍, 古斌权, 付玉婧, 臧全宇, 邢乃林, 张香琴. 甜瓜耐低温弱光生理指标数据处理及极端材料筛选[J]. 华北农学报, 2020, 35(S1):183-188.doi: 10.7668/hbnxb.20191243.
|
|
Song H, Huang Y P, Gu B Q, Fu Y J, Zang Q Y, Xing N L, Zhang X Q. Physiological data processing and extreme material selection of low temperature and low light tolerance in melon[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(S1):183-188.
|
[13] |
|
|
Ye B Y, Li X Q, Chi Y, Jin P, Jin S H. Effects of high temperature stress on photosynthesis and antioxidant system of Carya cathayensis[J]. Molecular Plant Breeding, 2024, 22(12):4018-4024.
|
[14] |
Zhang W J, Huang Z L, Xu K F, Liu L, Zeng Y L, Ma S Y, Fan Y H. The effect of plant growth regulators on recovery of wheat physiological and yield-related characteristics at booting stage following chilling stress[J]. Acta Physiologiae Plantarum, 2019, 41(8):133.doi: 10.1007/s11738-019-2924-8.
|
[15] |
Amiri H, Banakar M H, Hemmati Hassan Gavyar P.Polyamines:new plant growth regulators promoting salt stress tolerance in plants[J]. Journal of Plant Growth Regulation, 2024, 43(12):4923-4940.doi: 10.1007/s00344-024-11447-z.
|
[16] |
|
|
Chen L, Hou J, Hu X L, Zhang J Z, Wang H D. Environmental behaviors of plant growth regulators in soil:a review[J]. Environmental Science, 2022, 43(1):11-25.
|
[17] |
Lal M, Sood Y, Singh H, Kumar A, Wani A W, Kumar S. Influence of prohexadione-calcium on temperate fruit crops a review[J]. Ecology, Environment and Conservation, 2022,28:164-172.doi: 10.53550/eec.2022.v28i07s.028.
|
[18] |
Singh H, Mulvaney M J, Bashyal M, Singh K. Prohexadione calcium applications increase peanut peg strength[J]. Agronomy Journal, 2024, 116(6):3108-3116.doi: 10.1002/agj2.21682.
|
[19] |
Duong M V, Chung J W, Ha V G, Moon H, Yu J K, So Y S. Prohexadione-calcium mitigates the overgrowth of corn seedlings[J]. Agronomy, 2024, 14(2):371.doi: 10.3390/agronomy14020371.
|
[20] |
Başak H. Effects of prohexadione calcium applications on growth and yield characteristics of cucumber( Cucumis sativus L.)[J]. Sains Malaysiana, 2021, 50(8):2141-2152.doi: 10.17576/jsm-2021-5008-01.
|
[21] |
Deng R, Li Y, Feng N J, Zheng D F, Du Y W, Khan A, Xue Y B, Zhang J Q, Feng Y N. Integrative analyses reveal the physiological and molecular role of prohexadione calcium in regulating salt tolerance in rice[J]. International Journal of Molecular Sciences, 2024, 25(16):9124.doi: 10.3390/ijms25169124.
|
[22] |
Ozbay N, Susluoglu Z. Assessment of growth regulator prohexadione calcium as priming agent for germination enhancement of pepper at low temperature[J]. The Journal of Animal and Plant Sciences, 2016, 26(6):1652-1658.
|
[23] |
Hojnik M, Škerget M, Knez Ž. Isolation of chlorophylls from stinging nettle( Urtica dioica L.)[J]. Separation and Purification Technology, 2007, 57(1):37-46.doi: 10.1016/j.seppur.2007.02.018.
|
[24] |
Nahar K, Hasanuzzaman M, Suzuki T, Fujita M. Polyamines-induced aluminum tolerance in mung bean:a study on antioxidant defense and methylglyoxal detoxification systems[J]. Ecotoxicology, 2017, 26(1):58-73.doi: 10.1007/s10646-016-1740-9.
|
[25] |
Shu S, Guo S R, Sun J, Yuan L Y. Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine[J]. Physiologia Plantarum, 2012, 146(3):285-296.doi: 10.1111/j.1399-3054.2012.01623.x.
|
[26] |
Feng N J, Yu M L, Li Y, Jin D, Zheng D F. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense[J]. Ecotoxicology and Environmental Safety, 2021,220:112369.doi: 10.1016/j.ecoenv.2021.112369.
|
[27] |
Zhang Y P, Zhu X H, Ding H D, Yang S J, Chen Y Y. Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars[J]. Photosynthetica, 2013, 51(3):341-349.doi: 10.1007/s11099-013-0031-4.
|
[28] |
Hancock R D, Morris W L, Ducreux L J M, Morris J A, Usman M, Verrall S R, Fuller J, Simpson C G, Zhang R X, Hedley P E, Taylor M A. Physiological,biochemical and molecular responses of the potato( Solanum tuberosum L.) plant to moderately elevated temperature[J]. Plant,Cell & Environment, 2014, 37(2):439-450.doi: 10.1111/pce.12168.
|
[29] |
Annadurai M K K, Alagarsamy S, Karuppasami K M, Ramakrishnan S, Subramanian M, Venugopal P R B, Muthurajan R, Vellingiri G, Dhashnamurthi V, Veerasamy R, Parasuraman B, Rathinavelu S, Maduraimuthu D. Melatonin decreases negative effects of combined drought and high temperature stresses through enhanced antioxidant defense system in tomato leaves[J]. Horticulturae, 2023, 9(6):673.doi: 10.3390/horticulturae9060673.
|
[30] |
Patel M, Fatnani D, Parida A K. Silicon-induced mitigation of drought stress in peanut genotypes( Arachis hypogaea L.) through ion homeostasis,modulations of antioxidative defense system,and metabolic regulations[J]. Plant Physiology and Biochemistry, 2021,166:290-313.doi: 10.1016/j.plaphy.2021.06.003.
|
[31] |
Ren Y F, Wang W, He J Y, Zhang L Y, Wei Y J, Yang M. Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi( Brassica chinensis L.) by enhancing physiological and biochemical parameters[J]. Ecotoxicology and Environmental Safety, 2020,187:109785.doi: 10.1016/j.ecoenv.2019.109785.
|
[32] |
Lal M, Mir M M, Iqbal U, Kumar A. Influence of prohexadione-calcium and paclobutrazol on growth,yield and mineral content of pear cv.Clapp's favourite[J]. International Journal of Chemical Studies, 2020, 8(1):256-259.doi: 10.22271/chemi.2020.v8.i1c.8254.
|
[33] |
Monfort W S, Tubbs R S. Economic impact of prohexadione calcium for managing vine growth in runner market-type peanut[J]. Crops & Soils, 2021, 54(4):18-22.doi: 10.1002/crso.20126.
|
[34] |
杨江山, 李斗, 王春恒, 金鑫, 王宇航, 戴子博, 陈亚娟, 邵璋, 冯丽丹. 调环酸钙对霞多丽葡萄生理特性及果实品质的影响[J]. 果树学报, 2024, 41(1):76-88.doi: 10.13925/j.cnki.gsxb.20230406.
|
|
Yang J S, Li D, Wang C H, Jin X, Wang Y H, Dai Z B, Chen Y J, Shao Z, Feng L D. The effect of calcium citrate on the physiological characteristics and fruit quality of Chardonnay grapes[J]. Journal of Fruit Trees, 2024, 41(1):76-88.
|
[35] |
Li D, Yang J S, Dai Z B, Chen Y J, Shao Z, Wang C H, Jin X, Wang Y H, Feng L D. Prohexadione-calcium improves grape quality by regulating endogenous hormones,sugar and acid metabolism and related enzyme activities in grape berries[J]. BMC Plant Biology, 2024, 24(1):122.doi: 10.1186/s12870-024-04803-4.
|
[36] |
Hu J, Zhao X Y, Gu L M, Liu P, Zhao B, Zhang J W, Ren B Z. The effects of high temperature,drought,and their combined stresses on the photosynthesis and senescence of summer maize[J]. Agricultural Water Management, 2023,289:108525.doi: 10.1016/j.agwat.2023.108525.
|
[37] |
Gu C, Xu H Y, Zhou Y H, Yao J L, Xie Z H, Chen Y Y, Zhang S L. Multiomics analyses unveil the involvement of microRNAs in pear fruit senescence under high-or low-temperature conditions[J]. Horticulture Research, 2020,7:196.doi: 10.1038/s41438-020-00420-y.
|