[1] |
李凯, 刘志涛, 李海朝, 张锴, 王成坤, 任锐, 卢为国, 智海剑. 国家大豆区域试验品种对SMV和SCN的抗性分析[J]. 大豆科学, 2013, 32(5):670-675.
|
|
Li K, Liu Z T, Li H C, Zhang K, Wang C K, Ren R, Lu W G, Zhi H J. Resistance to Soybean mosaic virus and soybean cyst nematode of soybean cultivars from China national soybean uniform trials[J]. Soybean Science, 2013, 32(5):670-675.
|
[2] |
|
|
Qi G X, Dong L C, Zhang W, Yuan C P, Liu X D, Wang Y N, Dong Y S, Wang Y M, Zhao H K. Evaluation of resistance to Soybean mosaic virus strain 3(SMV3)in foreign soybean germplasm resources[J]. Crops, 2022(6):70-74.
|
[3] |
王大刚, 陈圣男, 黄志平, 李杰坤, 吴倩, 胡国玉, 王维虎, 杨永庆. 大豆新品系抗SMV鉴定及分析[J]. 华北农学报, 2021, 36(S1):326-332.doi: 10.7668/hbnxb.20191757.
|
|
Wang D G, Chen S N, Huang Z P, Li J K, Wu Q, Hu G Y, Wang W H, Yang Y Q. Identification and analysis of soybean new lines for resistance to Soybean mosaic virus[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1):326-332.
|
[4] |
Wu C X, Luo J Y, Xiao Y J. Multi-omics assists genomic prediction of maize yield with machine learning approaches[J]. Molecular Breeding, 2024, 44(2):14.doi: 10.1007/s11032-024-01454-z.
|
[5] |
Puthiyaparambil J C, Pagie M, Teressita S, Jay P M, Bongani N, Paul F, Candy M, Mark M, Marion M, Ian M, Sanskruti L, Nitin M. Rapid papaya crop improvement through accelerated in vitro breeding and molecular diagnostics[J]. Acta Horticulturae, 2023(1362):499-506.doi: 10.17660/actahortic.2023.1362.67.
|
[6] |
Parihar A, Shiwani. Molecular breeding and marker-assisted selection for crop improvement[M]// Plant Genomics for Sustainable Agriculture. Singapore: Springer Nature Singapore,2022:129-164.doi: 10.1007/978-981-16-6974-3_6.
|
[7] |
Baidyussen A, Khassanova G, Utebayev M, Jatayev S, Kushanova R, Khalbayeva S, Amangeldiyeva A, Yerzhebayeva R, Bulatova K, Schramm C, Anderson P, Jenkins C L D, Soole K L, Shavrukov Y. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley( Hordeum vulgare L.)[J]. Journal of Integrative Agriculture, 2024, 23(1):20-38.doi: 10.1016/j.jia.2023.06.012.
|
[8] |
Yu Y G. RFLP and microsatellite mapping of a gene for Soybean mosaic virus resistance[J]. Phytopathology, 1994, 84(1):60.doi: 10.1094/phyto-84-60.
|
[9] |
Jeong S C, Kristipati S, Hayes A J, Maughan P J, Noffsinger S L, Gunduz I, Buss G R, Maroof M A. Genetic and sequence analysis of markers tightly linked to the Soybean mosaic virus resistance gene, Rsv3[J]. Crop Science, 2002, 42(1):265-270.doi: 10.2135/cropsci2002.2650.
|
[10] |
Jeong S C, Saghai Maroof M A. Detection and genotyping of SNPs tightly linked to two disease resistance loci, Rsv1 and Rsv3,of soybean[J]. Plant Breeding, 2004, 123(4):305-310.doi: 10.1111/j.1439-0523.2004.00981.x.
|
[11] |
Saghai Maroof M A, Tucker D M, Skoneczka J A, Bowman B C, Tripathy S, Tolin S A. Fine mapping and candidate gene discovery of the Soybean mosaic virus resistance gene, Rsv4[J]. The Plant Genome, 2010, 3(1):14-22.doi: 10.3835/plantgenome2009.07.0020.
|
[12] |
|
|
Wang D G, Huang Z P, Yang Y, Li J K, Wu Q. Progress on studies of resistance genes and molecular markers of Soybean mosaic virus[J]. Journal of Plant Genetic Resources, 2024, 25(6):882-897.
|
[13] |
Chu J H, Li W L, Yang Z W, Shao Z Q, Zhang H, Rong S D, Kong Y B, Du H, Li X H, Zhang C Y. Genome resequencing reveals genetic loci and genes conferring resistance to SMV-SC8 in soybean[J]. Theoretical and Applied Genetics, 2023, 136(6):129.doi: 10.1007/s00122-023-04373-3.
pmid: 37193909
|
[14] |
Jin T T, Yin J L, Wang T, Xue S, Li B W, Zong T X, Yang Y H, Liu H, Liu M Z, Xu K, Wang L Q, Xing G N, Zhi H J, Li K. R SC3 K of soybean cv.Kefeng No.1 confers resistance to Soybean mosaic virus by interacting with the viral protein P3[J]. Journal of Integrative Plant Biology, 2023, 65(3):838-853.doi: 10.1111/jipb.13401.
|
[15] |
Yang Y Q, Zheng G J, Han L, Wang D G, Yang X F, Yuan Y, Huang S H, Zhi H J. Genetic analysis and mapping of genes for resistance to multiple strains of Soybean mosaic virus in a single resistant soybean accession PI 96983[J]. Theoretical and Applied Genetics, 2013, 126(7):1783-1791.doi: 10.1007/s00122-013-2092-y.
|
[16] |
Zhang Y H, Du H P, Zhao T T, Liao C M, Feng T, Qin J, Liu B H, Kong F J, Che Z J, Chen L Y. GmTOC1b negatively regulates resistance to Soybean mosaic virus[J]. The Crop Journal, 2023, 11(6):1762-1773.doi: 10.1016/j.cj.2023.08.001.
|
[17] |
Zhao Z H, Wang R N, Su W H, Sun T J, Qi M N, Zhang X Y, Wei F J, Yu Z L, Xiao F M, Yan L, Yang C Y, Zhang J, Wang D M. A comprehensive analysis of the WRKY family in soybean and functional analysis of GmWRKY164-GmGSL7c in resistance to Soybean mosaic virus[J]. BMC Genomics, 2024, 25(1):620.doi: 10.1186/s12864-024-10523-8.
|
[18] |
Morel J B, Dangl J L. The hypersensitive response and the induction of cell death in plants[J]. Cell Death & Differentiation, 1997, 4(8):671-683.doi: 10.1038/sj.cdd.4400309.
|
[19] |
Ward E R, Uknes S J, Williams S C, Dincher S S, Wiederhold D L, Alexander D C, Ahl-Goy P, Metraux J P, Ryals J A. Coordinate gene activity in response to agents that induce systemic acquired resistance[J]. The Plant Cell, 1991, 3(10):1085-1094.doi: 10.1105/tpc.3.10.1085.
|
[20] |
|
[21] |
Nimmy M S, Kumar V, Suthanthiram B, Subbaraya U, Nagar R, Bharadwaj C, Jain P K, Krishnamurthy P. A systematic phylogenomic classification of the multidrug and toxic compound extrusion transporter gene family in plants[J]. Frontiers in Plant Science, 2022,13:774885.doi: 10.3389/fpls.2022.774885.
|
[22] |
Magalhaes J V, Liu J P, Guimarães C T, Lana U G P, Alves V M C, Wang Y H, Schaffert R E, Hoekenga O A, Piñeros M A, Shaff J E, Klein P E, Carneiro N P, Coelho C M, Trick H N, Kochian L V. A gene in the multidrug and toxic compound extrusion(MATE)family confers aluminum tolerance in sorghum[J]. Nature Genetics, 2007, 39(9):1156-1161.doi: 10.1038/ng2074.
|
[23] |
Ku Y S, Cheng S S, Cheung M Y, Lam H M. The roles of multidrug and toxic compound extrusion(MATE)transporters in regulating agronomic traits[J]. Agronomy, 2022, 12(4):878.doi: 10.3390/agronomy12040878.
|
[24] |
Wang S S, Chen K, Zhang J Y, Wang J Q, Li H S, Yang X Y, Shi Q H. Genome-wide characterization of MATE family members in Cucumis melo L.and their expression profiles in response to abiotic and biotic stress[J]. Horticultural Plant Journal, 2022, 8(4):474-488.doi: 10.1016/j.hpj.2022.05.004.
|
[25] |
Santos E, Benito C, Silva-Navas J, Gallego F J, Figueiras A M, Pinto-Carnide O, Matos M. Characterization,genetic diversity,phylogenetic relationships,and expression of the aluminum tolerance MATE1 gene in Secale species[J]. Biologia Plantarum, 2018, 62(1):109-120.doi: 10.1007/s10535-017-0749-0.
|
[26] |
Zhou G F, Pereira J F, Delhaize E, Zhou M X, Magalhaes J V, Ryan P R. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3[J]. Journal of Experimental Botany, 2014, 65(9):2381-2390.doi: 10.1093/jxb/eru121.
|
[27] |
Qiu W, Dai J, Wang N Q, Guo X T, Zhang X L, Zuo Y M. Effects of Fe-deficient conditions on Fe uptake and utilization in P-efficient soybean[J]. Plant Physiology and Biochemistry, 2017,112:1-8.doi: 10.1016/j.plaphy.2016.12.010.
|
[28] |
Tiwari M, Sharma D, Singh M, Tripathi R D, Trivedi P K. Expression of OsMATE1 and OsMATE2 alters development,stress responses and pathogen susceptibility in Arabidopsis[J]. Scientific Reports, 2014,4:3964.doi: 10.1038/srep03964.
|
[29] |
Rodríguez-Beáltrán J, Rodríguez-Rojas A, Guelfo J R, Couce A, Bl zquez J.The Escherichia coli SOS gene dinF protects against oxidative stress and bile salts[J]. PLoS One, 2012, 7(4):e34791.doi: 10.1371/journal.pone.0034791.
|
[30] |
Sun X L, Gilroy E M, Chini A, Nurmberg P L, Hein I, Lacomme C, Birch P R J, Hussain A, Yun B W, Loake G J. ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance[J]. New Phytologist, 2011, 192(2):471-482.doi: 10.1111/j.1469-8137.2011.03820.x.
|
[31] |
Nawrath C, Heck S, Parinthawong N, Métraux J P. EDS5,an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis,is a member of the MATE transporter family[J]. The Plant Cell, 2002, 14(1):275-286.doi: 10.1105/tpc.010376.
|
[32] |
Parinthawong N, Cottier S, Buchala A, Nawrath C, Métraux J P. Localization and expression of EDS5H a homologue of the SA transporter EDS5[J]. BMC Plant Biology, 2015, 15(1):135.doi: 10.1186/s12870-015-0518-1.
|
[33] |
Lin J, Lan Z J, Hou W H, Yang C Y, Wang D G, Zhang M C, Zhi H J. Identification and fine-mapping of a genetic locus underlying soybean tolerance to SMV infections[J]. Plant Science, 2020,292:110367.doi: 10.1016/j.plantsci.2019.110367.
|
[34] |
杨永庆, 侯文焕, 边全楽, 闫龙, 张梅申, 孟小莽, 刘丽娟, 林静, 智海剑, 张孟臣. 河北地区大豆花叶病毒株系的组成与分布[J]. 大豆科学, 2014, 33(1):87-90.
|
|
Yang Y Q, Hou W H, Bian Q L, Yan L, Zhang M S, Meng X M, Liu L J, Lin J, Zhi H J, Zhang M C. Composition and distribution of SMV strains in Hebei[J]. Soybean Science, 2014, 33(1):87-90.
|
[35] |
Durrett T P, Gassmann W, Rogers E E. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation[J]. Plant Physiology, 2007, 144(1):197-205.doi: 10.1104/pp.107.097162.
|
[36] |
Wu X X, Li R, Shi J, Wang J F, Sun Q Q, Zhang H J, Xing Y X, Qi Y, Zhang N, Guo Y D. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2014, 55(8):1426-1436.doi: 10.1093/pcp/pcu067.
|
[37] |
Tovkach A, Ryan P R, Richardson A E, Lewis D C, Rathjen T M, Ramesh S, Tyerman S D, Delhaize E. Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices[J]. Plant Physiology, 2013, 161(2):880-892.doi: 10.1104/pp.112.207142.
|
[38] |
Maron L G, Piñeros M A, Guimarães C T, Magalhaes J V, Pleiman J K, Mao C Z, Shaff J, Belicuas S N J, Kochian L V. Two functionally distinct members of the MATE(multi-drug and toxic compound extrusion)family of transporters potentially underlie two major aluminum tolerance QTLs in maize[J]. The Plant Journal, 2010, 61(5):728-740.doi: 10.1111/j.1365-313X.2009.04103.x.
|
[39] |
Jiang H P, Lyu S C, Zhou C J, Qu S, Liu F, Sun H W, Zhao X, Han Y P. Identification of QTL, QTL-by-environment interactions,and their candidate genes for resistance HG Type 0 and HG Type 1.2.3.5.7 in soybean using 3VmrMLM[J]. Frontiers in Plant Science, 2023,14:1177345.doi: 10.3389/fpls.2023.1177345.
|