[1] |
|
|
Su P S. Research advances in wheat FHB resistance mechanism[J]. Current Biotechnology, 2021, 11(5):599-609.
doi: 10.19586/j.2095-2341.2021.0111
|
[2] |
张立勇, 夏明聪, 徐文, 王琦, 张洁, 孙润红, 潘娅梅, 陈瑞雪, 吴坤, 杨丽荣. 拮抗小麦赤霉病内生细菌YB-144的鉴定及其对DON的影响[J]. 华北农学报, 2020, 35(6):172-179.doi: 10.7668/hbnxb.20191619.
|
|
Zhang L Y, Xia M C, Xu W, Wang Q, Zhang J, Sun R H, Pan Y M, Chen R X, Wu K, Yang L R. Identification of antagonistic endophytic bacterium YB-144 strain from Fusarium head blight against and its effect on DON[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(6):172-179.
|
[3] |
张颖君, 高慧敏, 李子千, 胡梦芸, 孙丽静, 刘茜, 吕亮杰, 李辉. 黄淮北片冬麦区抗赤霉病基因 Fhb1种质挖掘及溯源[J]. 华北农学报, 2020, 35(2):196-202.doi: 10.7668/hbnxb.20190265.
|
|
Zhang Y J, Gao H M, Li Z Q, Hu M Y, Sun L J, Liu Q, Lü L J, Li H. Screening of Fhb1 germplasms resistant to Fusarium head blight and its putative ancestor in north of Huang and Huai winter wheat region[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(2):196-202.doi: 10.7668/hbnxb.20190265.
|
[4] |
Li G Q, Zhou J Y, Jia H Y, Gao Z X, Fan M, Luo Y J, Zhao P T, Xue S L, Li N, Yuan Y, Ma S W, Kong Z X, Jia L, An X, Jiang G, Liu W X, Cao W J, Zhang R R, Fan J C, Xu X W, Liu Y F, Kong Q Q, Zheng S H, Wang Y, Qin B, Cao S Y, Ding Y X, Shi J X, Yan H S, Wang X, Ran C F, Ma Z Q. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight[J]. Nature Genetics, 2019, 51(7):1106-1112.doi: 10.1038/s41588-019-0426-7.
|
[5] |
Su Z Q, Bernardo A, Tian B, Chen H, Wang S, Ma H X, Cai S B, Liu D T, Zhang D D, Li T, Trick H, St Amand P, Yu J M, Zhang Z Y, Bai G H. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat[J]. Nature Genetics, 2019, 51(7):1099-1105.doi: 10.1038/s41588-019-0425-8.
|
[6] |
Chen H, Su Z Q, Tian B, Liu Y, Pang Y H, Kavetskyi V, Trick H N, Bai G H. Development and optimization of a Barley stripe mosaic virus-mediated gene editing system to improve Fusarium head blight resistance in wheat[J]. Plant Biotechnology Journal, 2022, 20(6):1018-1020.doi: 10.1111/pbi.13819.
|
[7] |
瓮巧云, 黄聪聪, 王娜, 梁晨曦, 刘高然, 郝丛丛, 邢继红, 董金皋. 拟南芥抗灰霉病基因 T1N6_22互作蛋白的筛选与分析[J]. 华北农学报, 2017, 32(2):45-49.doi: 10.7668/hbnxb.2017.02.007.
|
|
Wang Q Y, Huang C C, Wang N, Liang C X, Liu G R, Hao C C, Xing J H, Dong J A. Screening and analysis of interacting proteins of T1N6_22 gene from Arabidopsis against Botrytis cinerea[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(2):45-49.
|
[8] |
|
|
Gu J, Li H, An R P, Liu G, Wang D M. Interaction between wheat cysteine-rich receptor-like kinases TaCRK2 and translationally controlled tumor protein TaTCTP[J]. Journal of Hebei Agricultural University, 2020, 43(4):16-22.
|
[9] |
Chaudhary S, Jabre I, Reddy A S N, Staiger D, Syed N H. Perspective on alternative splicing and proteome complexity in plants[J]. Trends in Plant Science, 2019, 24(6):496-506.doi: 10.1016/j.tplants.2019.02.006.
pmid: 30852095
|
[10] |
Pan Q, Shai O, Lee L J, Frey B J, Blencowe B J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing[J]. Nature Genetics, 2008, 40(12):1413-1415.doi: 10.1038/ng.259.
pmid: 18978789
|
[11] |
Marquez Y, Brown J W S, Simpson C, Barta A, Kalyna M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis[J]. Genome Research, 2012, 22(6):1184-1195.doi: 10.1101/gr.134106.111.
pmid: 22391557
|
[12] |
|
|
Yu J L, Liu C A, Fu L, Wang X, Ouyang J X. Analyzing splice variants and expression of variable the OsHSP40 gene in rice[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(3):1-6.
|
[13] |
Erkelenz S, Mueller W F, Evans M S, Busch A, Schöneweis K, Hertel K J, Schaal H. Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms[J]. RNA, 2013, 19(1):96-102.doi: 10.1261/rna.037044.112.
pmid: 23175589
|
[14] |
Li Y, Guo Q H, Liu P, Huang J G, Zhang S Z, Yang G D, Wu C G, Zheng C C, Yan K. Dual roles of the serine/arginine-rich splicing factor SR45a in promoting and interacting with nuclear cap-binding complex to modulate the salt-stress response in Arabidopsis[J]. The New Phytologist, 2021, 230(2):641-655.doi: 10.1111/nph.17175.
|
[15] |
Ling Z H, Zhou W W, Baldwin I T, Xu S Q. Insect herbivory elicits genome-wide alternative splicing responses in Nicotiana attenuata[J]. The Plant Journal, 2015, 84(1):228-243.doi: 10.1111/tpj.12997.
|
[16] |
Lorkovic Z J, Hilscher J, Barta A. Co-localisation studies of Arabidopsis SR splicing factors reveal different types of speckles in plant cell nuclei[J]. Experimental Cell Research, 2008, 314(17):3175-3186. doi: 10.1016/j.yexcr.2008.06.020.
|
[17] |
Jia Z C, Das D, Zhang Y J, Fernie A R, Liu Y G, Chen M X, Zhang J H. Plant serine/arginine-rich proteins: versatile players in RNA processing[J]. Planta, 2023, 257(6):109. doi: 10.1007/s00425-023-04132-0.
|
[18] |
Park H J, You Y N, Lee A, Jung H, Jo S H, Oh N, Kim H S, Lee H J, Kim J K, Kim Y S, Jung C, Cho H S. OsFKBP20-1b interacts with the splicing factor OsSR45 and participates in the environmental stress response at the post-transcriptional level in rice[J]. The Plant Journal, 2020, 102(5):992-1007.doi: 10.1111/tpj.14682.
pmid: 31925835
|
[19] |
Yan Q Q, Xia X, Sun Z F, Fang Y D. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes[J]. PLoS Genetics, 2017, 13(3):e1006663.doi: 10.1371/journal.pgen.1006663.
|
[20] |
Huang J, Lu X Y, Wu H W, Xie Y C, Peng Q, Gu L F, Wu J Y, Wang Y C, Reddy A S N, Dong S M. Phytophthora effectors modulate genome-wide alternative splicing of host mRNAs to reprogram plant immunity[J]. Molecular Plant, 2020, 13(10):1470-1484.doi: 10.1016/j.molp.2020.07.007.
pmid: 32693165
|